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Sediments of the Fruitland Formation in northwestern New Mexico represent
a delta plain that prograded northeastward over the retrating strandline of the
North American epeiric seaway during the late Campanian. Fruitland fossil:
vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodillans, dinosaurs
(mostly hadrosaurs and ceratopsians) and mammals. Autochthonous fossils in
the Fruitland Formation represent organisms of the trophically-complex Para-
saurolophus community. Differences in diversity, physical stress and life-history
strategies within the Parasaurolophus community fit well the stability-time
hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas
fishes, amphibians, small reptiles and mammals experienced greater physlcal
stress. Because of this, dinosaurs were less likely to recover from an environment-
al catastrophe than were smaller contemporaneous vertebrates. The terminal
Cretaceous extinctions selectively eliminated animals that lived in less physically-
-stressed situations, indicating that the extinctions resulted from an environmental
catastrophe.
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INTRODUCTION

The Fruitland Formation in .the west-central San Juan Basin, New
Mexico (USA) contains an abundant record of the biota that lived along
part of the western shore of the North American epeiric seaway during
the late Campanian (Late Cretaceous). Although study of Fruitland pa-
leontology and stratigraphy began over 60 years ago (Bauer 1916; Gilmore
1916), knowledge of Fruitland fossils and sediments has only recently
reached a point where a reasonable, albeit general, paleoecological syn-
thesis is possible. This paper presents such a synthesis.
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GEOLOGY OF THE FRUITLAND FORMATION

The Fruitland Formation is exposed in a relatively narrow and dis-
continuous belt around the central San Juan Basin (fig. 1). Isolated out-
crops north of the San Juan Basin in western Colorado also have been
assigned to the Fruitland (Dickinson 1965).

Due to uplift on the eastern side of the San Juan Basin during the
Laramide Orogeny, the Fruitland Formation is poorly exposed there
on the slopes of steeply-dipping hogbacks. On the western edge of the
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Fig. 1. Location and distribution of the Fruitland Formation in the San Juan Basin,
New Mexico and Colorado (after Fassett and Hinds 1971: pl. 1) and the location
of the area from which data used in this paper was derived.
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central San Juan Basin, however, nearly flat-lying strata of the Fruitland
form extensive and picturesque badlands. Virtually all fossils from the
Fruitland have been collected from these western exposures, and the data
and interpretations presented here are derived from work in this area

(fig. 1).

Thickness and contacts

The exposed strata of the Fruitland Formation in the western-central
San Juan Basin range in thickness from 58 to 170 m (Fassett and Hinds
1971). At its base, the Fruitland intertongues with the littoral Pictured
Cliffs Sandstone; the Pictured Cliffs is underlain by the deeper marine
Lewis Shale. At its top the Fruitland grades into the fluvial Kirtland
Shale. Because of this gradation, the Fruitland-Kirtland contact in the
western-central San Juan Basin is arbitrarily mapped, either “at the top
of the stratigraphically-highest brown sandstone” (Dane 1936: 113) or “at
the top of the highest coal bed or carbonaceous shale bed” (Fassett and
Hinds 1971: 19). These arbitrarily chosen boundaries are within a few
meters of each other.

Lithology and fessil occurrences

The Fruitland Formation is composed of three major lithologies:

(1) Sandstones. — Most Fruitland sandstones are fine- to medium-
grained, calcite-cemented, submature subarkoses (Fassett and Hinds 1971).
Many sand bodies display through cross-stratification, are laterally dis-
continuous and have scour bases. These sandstones typically decrease
in grain size upward. Fossil “log jams” sometimes occur near their bases
and carbonized plant matter often follows cross-stratification. Isolated
dinosaur bones and turtle shells are common in the sandstones. Dinosaur
skeletons are rare in the sandstones, and in the Fruitland as a whole. Accu-
mulations of small-vertebrate remains occur frequently in coarse fo gra-
velly beds at the bases of the sandstones.

(2) Shales and siltstones. — Fine-grained clastics of the Fruitland For-
mation’ are generally fissile, drab-colored (gray, buff, olive) shales and
siltstones. Gray-black shales containing significant amounts of carbo-
naceous material also are common and locally contajn well-preserved
fossil leaves. Some dinosaur and turtle remains occur in Fruitland shales,
though less frequently than in sandstones. Coquina beds and isolated
shells, either of unionids and gastropods, or of oysters, are common in
shales of the lower part of the Fruitland. Although individual beds of
shale and siltstone are laterally discontinuous within a few tens of meters,
shale-siltstone sequences within the Fruitland may continue over one km
or more, only intermittently interrupted by sandstones.
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(3) Coal. — The most laterally continuous beds of the Fruitland For-
mation are coals; some are over nine m thick and extend laterally for
several km.

In general, the thicker coals and sandstones are confined to the lower
part of the Fruitland. The upper part of the formation contains more
shale and also is more fossiliferous than the lower part.

DEPOSITIONAL ENVIRONMENT OF THE FRUITLAND FORMATION

Deposition of the Fruitland Formation took place along the northwest-
southeast trending shoreline of the epeiric seaway that bisected North
America during the Late Cretaceous (Fassett and Hinds 1971). Source
areas from which Fruitland sediments were derived were primarily to
the west of the present San Juan Basin (Hayes 1970; Fassett and Hinds
1971). Erpenbeck and Flores (1979), Fassett and Hinds (1971) and Hunt
(1981), among others, have suggested that Fruitland deposition took place
on a delta-plain. We agree with this interpretation and identify six en-
“vironments (fig. 2) in the Lewis Shale-Pictured Cliffs Sandstone-Fruit-
land Formation-Kirtland Shale sequence that fit well the model of high-
constructive deltaic deposition presented by Weimer and Land (1975).

(1) Neritic environment. — Gray, fissile, slity shales and clayey silt-
stones of the Lewis Shale contain rare sand- and silt-filled burrows of
deposit feeders .(Planolites) and sparse fossils of open marine animals
such as ammonites, sharks and mosasaurs (Mannhard 1976; Lucas and
Reser 1981). They clearly were deposited in deep water below wave base.
The great thickness of the Lewis Shale (up to 600 m) suggests abundant
mud- supply and high sedimentation rates that would have led to low
bioturbation rates (Mannhard 1976).

(2) Prodelta environment. — Gray, fissile shales and some thin, fine-
grained, subparallel-laminated sandstones of the uppermost Lewis Shale
infrequently contain fossils of ammonites and pelecypods. They reflect
prodeltaic sedimentation in water depths just below effective wave base
at the furthest reaches of coarse clastic deposition from the delta front.

(3) Distal delta front environment. — Tan, fine-grained, subparallel-
-laminated sandstones alternating with gray shale layers of the lower part
of the Pictured Cliffs Sandstone contain the trace fossils of burrowing
crustaceans (Ophiomorpha) and rare molds of pelecypod shells. This se-
quence represents the lower-energy, distal portions of distributary-mouth
bars.

(4) Prozimal delta front environment. — Tan, fine- to medium-grained
sandstone, trough-crossbedded in part and with deformed “ball and pil-
low” structures in places, characterizes the upper part of the Pictured
Cliffs Sandstone. Ophiomorpha and other fossils are extremely rare in
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Fig. 2. Depositional environments of the Lewis Shale, Pictured Cliffs Sandstone,
Fruitland Formation and lower part of the Kirtland Shale (A4), Diagrammatic
paleogeographic map of part of northwestern New Mexico during the late Campanian
showing the environments of deposition of the rocks that now compose the Lewis
Shale, Pictured Cliffs Sandstone, Fruitland Formation and Kirtland Shale (lower
part). (B), Diagram showing relationships of the Lewis Shale, Pictured Cliffs
Sandstone, Fruitland Formation and Kirtland Shale (lower part) to a deltaic
sedimentation model. (C), Measured section of the Lewis Shale (upper part), Pictured
Cliffs Sandstone and Fruitland Formation (lower part) at a locality in the western-

central San Juan Basin, exemplifying the depositional environments depicted
diagrammatically in (4) and (B).

this lithology. A higher-energy environment, typical of the proximal por-
tions of distributary mouth bars is indicated. '

(5) Delta plain environment. — The Fruitland Formation is a typical
deltaplain deposit in which a variety of subenvironments can be identified.
Crossbedded sandstones represent fluvial channel and crevasse splay
subenvironments; shales and siltstones represent overbank floodplain and
pond subenvironments; thick coals represent extensive interdistributary
swamp subenvironments and thin coals represent smaller swamp and
pond subenvironments. The extensive and thick coals of the Fruitland
indicate a densely-vegetated and predominantly subaqueous environ-
ment.
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(6) Inland floodplain environment. — Medium- fo coarse-grained sand-
stones, mudstones and a virtual absence of coal in the Kirtland Shale
indicate fluvial deposition on relatively well-drained inland floodplains.

BIOTA OF THE FRUITLAND FORMATION

Plants

Fruitland Formation megafossil plants, represented by leaves and
wood, are ferns, conifers and angiosperms. Following the antiquated
taxonomy of Knowlton (1916), common angiosperms are Ficus, Magnolia,
Platanus, Carya and Sabalites (Tidwell et al. 1981). Most angiosperm
leaves are mediumsized, nearly entire- or entire-margined and have
“drip tips”. This type of leaf shape, combined with the presence of ferns
and palms, suggests the presence of a warm and wet (ergo subtropical)
climate during Fruitland deposition.

Invertebrates

Invertebrates found in the Fruitland Formation are unionids, gastro-
pods and Ostrea (Stanton 1916). A single leaf mine is evidence of the
presence of insects (Tidwell et al. 1981). Most molluscs in the lower part
(35 m) of the Fruitland are brackish-water forms; in the upper part of
the Fruitland freshwater forms are more abundant (Hartman 1981).

Vertebrates

The vertebrate fauna of the Fruitland Formation is a taxonomically
diverse array of fishes, amphibians, lizards, a snake, turtles, crocodilians,
dinosaurs and mammals (Lucas 1981: table 1). Teeth of sharks (Hybodon-
tidae, Isuridae, Orectolobidae) and rays (e.g., Myledaphus) are abundant,
but bony fishes, except amiids and gars, are rare. Anurans also are poorly
known, but salamanders and baenid, dermatemydid and trionychid turt-
les are abundant as fossils. Lizards (teiids and anguids), however, are not
well represented. Crocodilians include Brachychampsa, Leidyosuchus and
a possible occurrence of Thoracosaurus.

Fruitland dinosaurs consist of very rare remains of ankylosaurs, car-
nosaurs, dromaeosaurs and pachycephalosaurs; infrequent remains of coe-
lurosaurs; and abundant remains of hadrosaurs (“Kritosaurus’, Parasaur-
olophus) and ceratopsians (Pentaceratops, Monoclonius?). Mammals from
the Fruitland are “typical latest Cretaceous mammals” (Clemens and
Archibald 1980), mostly marsupials and ptilodontoid multituberculates
and less common eutherians.
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Trophic analysis

Autochthonous fossils in the Fruitland Formation are assumed to re-
present organisms that were part of a community that lived on the delta
plain in northwestern New Mexico during the Late Campanian. Lucas
(1981) named this community the Parasaurolophus community and cons-
tructed a hypothetical food web (fig. 3) based on autecological assumptions
and inferences. Because the fossil assemblage from the Fruitland Forma-
tion closely resembles other well-sampled assemblages form Late Cre-
taceous deltaic sediments elsewhere in western North America, Lucas
(1981) suggested that the trophic structure of the Parasaurolophus com-
munity was typical of Late Cretaceous deltaic communities in North
America. ’ :

Stability-time hypothesis

The stability-time hypothesis (Sanders 1968; Rollins and Donahue
1975) states that low physiological stresses acting through time produce
predominantly biologically-accomodated communities (low taxonomic
diversity of stenotopic k-strategists) whereas high physiological stresses
produce predominantly physically-accomodated communities (high taxo-
nomic diversity of eurytopic r-strategists). Although Sanders’ concept was
derived from studies of benthic marine communities, we believe that the
animals of the Parasaurolophus community can be arranged along a spec-
trum that has as its end points the two community types specified by the
stability-time hypothesis (fig. 4).

FISHES,TURTLES,etc.  DINOSAURS

ABIOTIC small, aquatic large, terrestrial
r-strategists k-strategists
high physical stress low physical stress
. EURYTOPIC- . - - ' STENOTOPIC

‘. SPECIES . - SPECIES -

decreasing stability =i
decreasing diversity —p

Fig. 4. Schematic representation of Sanders’ stability-time hypothesis (mo_dified
from Rollins and Donahue 1975) applied to the Parasaurolophus community.
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In this arrangement, we view the relatively diverse fishes, amphibians
and small reptiles of the Parasaurolophus community as r-strategists lar-
gely living in channels and ponds on the delta plain where physical
changes of an unstable, prograding shoreline (e.g., channel switching)
placed them in a physically-stressed environment. Because of their small,
size, mammals would also have been subject to the high physical stress
induced by unstable delta substrates and vegetational patterns. We en-
vision dinosaurs, on the other hand, as large terrestrial to semiaquatic
k-strategists (relative to their contemporaries) whose large size made
them less subject to physical stresses.

Bretsky and Lorenz (1970) demonstrated that animals living in situa-
tions of high physical stress are able to recover more rapidly from envi-
ronmental catastrophes than those that normally experience little physical
stress. We believe that it is significant that the terminal Cretaceous extinc-
tion eliminated the dinosaurs, here envisioned as animals living in situa-
tions of low physical stress, whereas most of the animals here identified
as those that lived in situations of high physical stress persisted into the
Tertiary (or at least close, ecologically similar, relatives did). These cir-
cumstances suggest that the terminal Cretaceous extinction of dinosaurs
resulted from an environmental catastrophe. The dinosaurs were unable
to cope with this catastrophe, but their smaller, more opportunistic con-
temporaries, whose Cretaceous world was characterized by relatively high /
physical stress, survived.
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