Vol. 33, No. 2

Warszawa, 1988

pp. 91-121; pls. 1-10

ELŻBIETA MORYCOWA

MIDDLE TRIASSIC SCLERACTINIA FROM THE CRACOW-SILESIA REGION, POLAND

MORYCOWA, E.: Middle Triassic Scleractinia from the Cracow-Silesia region, Poland. Acta Palaeont. Polonica, 33, 2, 91-121, 1988.

Scleractinian coral buildups from the Karchowice Beds (uppermost part of the Lower Muschelkalk) and from the Diplopora Dolomite (Middle Muschelkalk) of the Cracow-Silesia region were examined. Described corals comprise: three species known from literature — Coelocenia cf. decipiens (Laube), Pamiroseris silesiaca (Beyrich), Eckastraea prisca (Weissermel); four new species — Volzeia szulci, Morycastraea opoliensis, Silesiastraea weissermeli, Chevalieria tenuiseptata; and three determined as Stylophyllopsis sp., Cyathocoenia sp. and Pamiroseris sp. New genera, Eckastraea and Silesiastraea, are established. The most frequent component of coral communities appears Pamiroseris silesiaca.

Key words: Scleractinia, taxonomy, morphology, paleoecology, Middle Triassic, southern Poland.

Elżbieta Morycowa, Instytut Nauk Geologicznych, Uniwersytet Jagielloński, ul. Oleandry 2a, 30-063 Kraków, Poland. Received: November 1987.

INTRODUCTION

Scleractinian corals from the Muschelkalk of Silesia, mainly of the region of Opole, are known in the literature for more than 130 years. The corals have been described or cited by Beyrich (1852), Eck (1865, 1879), Roemer (1870), Ahlburg (1906), Weissermel (1925), Schmidt (1928, 1938), Assmann (1937), Morycowa (1981) and Morycowa and Roniewicz (1986). The most important of these is Weissermel's paper (1925) concerning the hitherto known Muschelkalk corals from Silesia.

The examined corals occur in limestones, dolomitic limestones and dolomites belonging to the epicontinental facies of the Middle European Triassic. Corals are rare in the Górażdże Beds, frequent in the Karchowice Beds and common in the *Diplopora* Dolomite (lithostratigraphical division after Assmann 1944 and Siedlecki 1949). Some corals were also reported from the ore-bearing dolomite of the Lower and partly Middle Muschelkalk. Coral-bearing strata are of the Anisian age (table 1), more precisely the Pelsonian and early Illyrian (Zawidzka 1975, Trammer 1980). The Karchowice Beds constitute the upper part of the Lower Muschelkalk (Assmann 1944, Siedlecki 1949). They correspond to the late Pelsonian (conodont *Neospathodus kockeli* Zone) and the early Illyrian (conodont Gondolella excelsa Zone) (Zawidzka 1975).

The Diplopora Dolomite belongs to the Middle Muschelkalk (Assmann 1944, Siedlecki 1949) and corresponds to the early Illyrian (Zawidzka 1975, Trammer 1980).

Nine genera and ten species were identified in the here described collection (table 1). Weissermel (1925) described from the Upper Silesia nine coral species (and one subspecies) representing six genera (table 2). As the generic names of Triassic corals (see Cuif 1974, 1975) need revision, in this paper the generic assignment of Weissermel's *Thamnasteria* and *Isastraea* species have been emended.

Acknowledgements. — The coral sites in the Karchowice Beds were kindly indicated to the author by Dr. Stanisław Dżułyński and Dr. Andrzej Kubicz. Several colonies from the Karchowice Beds and *Diplopora* Dolomite were given to the author by Dr. Ewa Roniewicz, Professor Krzysztof Birkenmajer, and Dr. Joachim Szulc. The specimens of corals from borehole cores were given by Czesław Harańczyk.

The valuable information of the mentioned persons is here kindly acknowledged. I thank also Dr. Ewa Roniewicz (Institute of Paleobiology, Polish Academy of Sciences, Warsaw) as well as Dr. Galina Melnikova (Institute of Geology, Tadzhik Academy of Sciences, Dushanbe) for discussions and comparative materials. I thank Dr. Franciszka Szymakowska for part of the drawings, Mr. Władysław Wyżga for making the thin sections, and Mr. Krzysztof Fedorowicz for making most of the photographs.

After the present paper had been submitted to the editors, the author has the opportunity to examine in the Museum f. Naturkunde d. Humboldt Universität, Berlin, and in the Zentrales Geologisches Institut Aussenstelle Bernau the collections of corals (Beyrich's, Eck's, Weissermel's, Assmann's) from the Muschelkalk of the Silesia region. The present author is grateful to Dr. Hermann Jaeger from the Museum, and Dr. Harry Döring from the Institut, for providing facilities and insight into collections of the corals.

The collection examined is stored at the Museum of the Institute of Geological Sciences, Jagiellonian University in Cracow (UJ).

MATERIAL

The earlier studied Triassic coral assemblages from Silesia were poor, both, in specimens and species (table 2). A new collection of corals from the Cracow-Silesia region in the author's disposal is relatively rich (table 1). It comprises 41 specimens — 21 from the Karchowice Beds and 20 from the *Diplopora* Dolomite — representing 10 species and 9 genera.

The corals have been collected from the Karchowice Beds exposed in the quarry at Kamień Śląski (19 specimens), Tarnów Opolski (1 specimen) and Izbicko in Opole region (1 specimen), and in the *Diplopora* Dolomite — in the quarries at Stare Gliny near Olkusz (14 specimens), Pogorzyce near Chrzanów (2 specimens) and in borehole cores from the vicinity of Zawiercie (4 specimens) (fig. 1, table 1).

Fig. 1. Distribution of coral-bearing localities; coral sites considered in present paper. Insert shows position of the region in question

The corals from the Muschelkalk of the Cracow-Silesia region are very poorly preserved. Nevertheless, the present author has undertaken their identification because the knowledge of the Anisian corals is of great importance for the phylogeny of the Scleractinia.

The coral collection under consideration comprises complete colonies or fragments, and natural casts of calicular surfaces. The colonies are small, several centimetres in diameter. The most frequent are thinlamellar forms, from a few millimetres to three centimetres thick, rarely massive, up to few centimetres in height. The thin-lamellar, often incrusting colonies occur usually in the form of several clusters, often superimposed one upon another (fig. 2). There occur also branching (even large phaceloid) colonies.

The coral skeletons are very poorly preserved. They are recrystallized, and sometimes partly dolomitized. The skeletal structure of the corals have been studied on the traces of trabeculae and by observation of septal ornamentation.

Table 1

Distribution of the examined species in the epicontinental Triassic

Province	Middle-European								
Geographical distribution	Cracow-Silesia region						G.D.R. F.R.G		
Are			Aı	nisian			Lac	linian	Anisian
Age		Pe	lsonian		Illyrian		Fassian		Anisian
Lithostratigraphy			N	Iuschel	kalk				Muschel- kalk
		Lo	ower		M Upper			Lower	
Species	Gogolin Beds	Górażdże Beds	Terebratula Beds	Karchowice Beds	<i>Diplopora</i> Dolomite	Tarnowice Beds	Wilkowice Beds	Boruszowice Beds	
Stylophyllopsis sp.				1					
Volzeia szulci sp.n.		_		1					
Coelocoenia cf. decipiens (Laube)					1				
Cyathocoenia sp.					3				
Pamiroseris silesiaca (Beyr.)		×	_	13 ×	10 ×				×
Pamiroseris sp.			-		2		_		
Morycastraea opoliensis sp.n.				2					
Silesiastraea weissermeli gen. et sp. n.				2	1				
Eckastraea prisca (Weiss.)				×	3		_		
Chevalieria tenuiseptata sp. n.				2					

1, 2 ... number of specimens under study; \times occurrences known from literature. Lithostratigraphy after Assmann 1944 and Siedlecki 1949; biostratigraphy after Zawidzka 1975. Abbreviations used in taxonomic descriptions:

c ---c distance between centres of corallites

D diameter of corallites

d diameter of calice

density of granulae (on lateral septal surfaces, in transverse section) dg s number of radial elements per corallite

 \mathbf{Sd}

septal density measured in the wall, in transverse section

S1. S2 number of radial elements of the 1st, 2nd, ... orders of length

- (...) values encountered rarely
- ((...)) values encountered sporadically.

CORAL-BEARING SEDIMENTS AND THEIR FAUNAL CONTENT

Karchowice Beds. — The corals from the Karchowice Beds come from one of old, now non-existent quarries (the "northern quarry") in Kamień Śląski and from the quarries still in operation at Tarnów Opolski and Izbicko (Opole region, fig. 1). The maximum thickness of the Karchowice Beds in this area is about 15 metres (Dżułyński and Kubicz 1971). Coralbearing strata are confined most probably within the upper part of these beds.

Fig. 2. Bioherm with corals of Karchowice Beds from Kamień Śląski; 1 poorly bedded limestone, 2 non-bedded limestone, 3 thin-lamellar coral colonies, 4 elements and fragments of crinoid stems, 5 pelecypod and brachiopod shells

The Karchowice Beds are represented mainly by beige, indistinctly stratified limestones and include small bioherms and biostromes of beige and beige-yellowish porous limestones (Dżułyński and Kubicz 1971, Morycowa 1974, 1981, Zawidzka 1975, Dr. J. Szulc personal communication) that are more organogenic in character than the accompanying deposits.

Some of the bioherms include accumulations of coral colonies (figs. 2, 3, 4). One bioherm (fig. 2) reveals colonies grouped in a horizon 30-40 cm thick, situated in its upper part. The most frequent are thin-lamellar

colonies at some places forming multistorey buildups. Colonies occur in life position.

The corals are accompanied by very numerous crinoid stems and fragments of stems, thin-shelled bivalves, and less numerous gastropods and brachiopods (including *Decurtella decurtata* (Girard)), as well as skeletal elements of echinoids (mainly spines).

Figs. 3, 4. Schematic drawings of bioherms of organogenic limestones with corals, Karchowice Beds at Kamień Śląski; 1 poorly bedded limestone, 2 non-bedded organogenic limestone with corals

The organogenic limestones from the bioherms appear in thin sections as biomicrites, biomicrosparites, biosparites (pl. 1: 1-8, pl. 2: 1-3). The matrix of these limestones includes annelid tubes, very thin shells of bivalves and ostracod carapaces, rare tests of foraminifera, scarce remains of dasycladacean algae, rare biogenic sedimentary structures related to cyanophytes, and small peloids.

Diplopora Dolomite. — The corals come from the exposures in the quarries at Stare Gliny and Pogorzyce, and from boreholes in the vicinity of Zawiercie (fig. 1, table 1).

The Diplopora Dolomite is represented by dolomites, dolomitic limestones with numerous (moulds and natural casts), and rare remains of fauna and algae (including Diplopora annulatissima Pia). The thickness of these strata in the investigated area is ca. 15—30 m (Assmann 1944, Siedlecki 1949).

The information on the mode of occurrence of corals in the deposits of the Middle Muschelkalk comes mainly from the exposures in the southern wall of the quarry at Stare Gliny. There are exposed yellowishgrey dolomites and calcareous dolomites, ca. 9 m thick. Coral colonies occur mainly in the lower, up to one metre thick part of the *Diplopora* Dolomite, represented here by detritic dolomites and calcareous dolomites. Apart from the corals, they include fragments of crinoid stems, moulds of bivalves and numerous fragments of dark-grey Devonian limestones (pl. 2: 4a, b).

Corals were also found in an oncolitic horizon, ca. 1 m thick, that occurs in the highest part of the exposure. The limestone, apart of the coral skeletons and their natural casts includes poorly preserved remains of foraminifera, debris of bivalves, echinoderms and dasycladacean algae (pl. 2: 6).

The microfacies of the detritic dolomites and calcareous dolomites include mainly extra-intradolomicrosparites (deposits related to the direct transgression of the *Diplopora* beds over the Devonian basement) as well as intradolosparite and intradolomicrosparite.

The oncoid deposits appear in thin sections mainly as oncodolomicrosparites and oncodolosparites. The microdolosparite, less frequently dolosparite matrix, with patches silicified to a various degree, includes microoncoides and less frequently oncoides, often completely altered by aggradational neomorphism and dolomitization. Few peloids are also present.

The corals from the *Diplopora* Dolomites in Stare Gliny occur usually as dispersed colonies. It seems that they do not occur in life position. They are chiefly encountered as casts of outer surfaces of colonies, rarely as colonies with somewhat altered, recrystallized skeleton, and often dolomitized.

The corals from the quarry at Pogorzyce occur in oncolitic deposits of the Middle Muschelkalk. These deposits are slightly porous, marly, cream-coloured. Microscopically they are oncodolosparites and oncosparites (pl. 2: 5a, b).

In similar oncolitic deposits occurred the casts of coral skeletons found in cores from two boreholes: Zawiercie Miasto ZMZ-14 (Glass plant), depth 42 m, and Zawiercie Miasto ("South") ZL 8-7, depth 36 m.

REMARKS ON CORAL PALEOECOLOGY AND PALEOGEOGRAPHICAL DISTRIBUTION

The environment of coral buildups formation in the Lower Muschelkalk (Karchowice Beds) was one of warm, shallow and calm waters (probably not more than 40 m deep), slightly off shore. This is indicated by development of hermatypic corals associated with dasycladacean algae. The relatively calm-water environment is indicated by sediment types (micrite-dominated) and coral growth forms (fine, thin-lamellar or branching corals occurring in life position), as well as preservation state of co-occurring fauna (non-fragmented delicate bivalve shells and frequent fairly long crinoid stems). The settling of coral larvae was probably facilitated by crinoidal "sand" abounding on the bottom.

The life conditions of the corals of the Middle Muschelkalk (*Diplopora* Dolomite) were those of warm and shallow waters (ca. 10-20 m) as indicated by the coral-algal association (hermatypic corals, dasycladacean algae), and the presence of oncoids. The detritic and oncoidal nature of the sediments is indicative of a relatively high energy of the environment.

The corals of the *Diplopora* Dolomite probably do not occur in life position, but are undoubtedly an autochthonous component of the sediment.

From the nineteen Muschelkalk coral species of the Cracow-Silesia region, the most frequent, both in the old and the present collections, is *Pamiroseris silesiaca* (Beyrich 1852). It is known from strata of similar age in GDR and FRG (Eck 1879, Schmidt 1938), as well as from the Tethyan province: Alps (Schauroth 1859, see also Eck 1879 and Weissermel 1925) and from southern China (Deng Zhanqiu and Kong Lei 1984, Qi Wentog 1984). Three other species are common with the Tethyan province, and one even with the Pacific province. Two of these are determined by Weissermel as *Thecosmilia compressa* (Anisian of Hungary and Czechoslovakia — West Carpathians; Kolosvary 1966) and *Thecosmilia caespitosa* Reuss (Late Triassic of the Alps, Hungary and North America: Frech 1890, Kolosvary 1966, Stanley 1986). The third is from the author's collection — *Coelocoenia* cf. *decipiens* (Laube). It is very close to *C. decipiens* (Laube) described from the Carnian of the Southern Alps (Laube 1865, Frech 1890, Volz 1896, and Cuif 1972).

DESCRIPTIONS

Suborder Stylophyllina Beauvais, 1981 Family Stylophyllidae Volz, 1896, emend. Alloiteau, 1952 Genus Stylophyllopsis Frech, 1890, emend. Cuif, 1972 Stylophyllopsis sp. (pl. 4: 2)

Material. — One fragment of colony (No. UJ 34P/1). Dimensions (in mm):

D ca. 3.0×4.0

S 12 S1+nS2 and S3

Description. — Fragment of small branching colony composed of two short corallites. Calices oval. Septa belonging to 2—3 orders. About 12 thick septa reach the centre of corallite. Between them much thinner, occurring irregularly. Inner edge

Table 2

Corals from the Cracow-Silesia region, known from literature*' (largely after Weissermel 1925; generic names not emended)

S	Stratigraphy			M	usch	elkalk		
Number of specimer	Species	Gogolin Beds	Górażdże Beds	Terebratula B.	Karchowice Beds	Diplopora Dolomite	Ore-bearing Dolomites	Occurrence (after Beyrich 1852, Eck 1865 and Weissermel 1925)
1	Coelocoenia(?) assmanni Weissermel				+*			Kamień Śląski
1	Coelocoenia exporrecta Weissermel				+*			Kamień Śląski
24	Montlivaltia triasina Dunker				+	+	+	Gliwice-Łabędy, Zabrze-Mi- kulczyce, Grabowiec n. Zabrze- Mikulczyce, Repty n. Tarnow- skie Góry, St. Anna Mt., Ka- mień Śląski, Jemielnica n. Strzelce Opolskie
5	Montlivaltia chonocalyx Weissermel		+		+		+	Strzelce Opolskie, Kępczowi- ce n. Tarnowskie Góry
1	Thecosmilia compressa Weissermel						+	Tarnowskie Góry
1	Thecosmilia caespitosa Reuss				+			Zabrze-Mikulczyce
1	Isastraea prisca Weissermel				+*			Kamień Śląski
1	Phyllocoenia globosa Weiss- ermel (= Phyllocoeniella globosa Weissermel, 1925)				+*			Kamień Śląski
23	Thamnastraea silesiaca Beyrich		+	+	+	+	+	Zabrze-Mikulczyce, Bytom, Tarnowskie Góry, Granice n. Jaworzno, Osiecznica n. Bolesławiec
1	Th. silesiaca v. sticho- phila Weissermel						+	Tarnowskie Góry

*) Names of localities used in old literature (Beyrich 1852, Eck 1865, Weissermel 1925, Assmann 1937 and others): Annaberg — Góra Św. Anny = St. Anna Mt.; Beuthen — Bytom; Grabowietz — Mühle bei Mikultschütz — Grabowiec, about 1/2 km N of Zabrze — Mikulczyce; Granietz — Granice, about 4 km SW of Jaworzno; Gleiwitz — Gliwice; Gross Stein — Kamień Śląski; Gross Strehlitz — Strzelce Opolskie; Himmelwitz — Jemielnica near Strzelce Opolskie; Kempczowitz — Kępczowice near Tarnowskie Góry; Laband — Łabędy = Gliwice — Łabędy (Łabędy about 2—3 km NW of Gliwice); Mikultschütz — Zabrze — Mikulczyce (N part of Zabrze); Repten — Repty, about 3—4 km SW of Tarnowskie Góry; Tarnowitz — Tarnowice, W quarter of Tarnowskie Góry; Wehrau — Osiecznica near Bolesławiec (Lower Silesia). of septa dissociating into isolated trabeculae which form a small papillar columella. Wall thick, finely longitudinally striated.

Remarks. — This species was included in the genus Stylophyllopsis (= Phacelostylophyllum Melnikova, 1972) on the basis of the development of septa.

Occurrence. – Cracow-Silesia region: Kamień Śląski – Karchowice Beds (uppermost Lower Muschelkalk).

> Suborder Pachythecalina Eliášová, 1978 Family Volzeiidae Beauvais, 1981¹⁾ Genus Volzeia Cuif, 1966 Volzeia szulci sp. n. (pl. 3: 1a-f; fig. 5)

Holotypus: UJ 34P/2; fig. 5; pl. 3: 1a-f.

Stratum typicum: Karchowice Beds (uppermost Lower Muschelkalk).

Locus typicus: Tarnów Opolski (Opole region).

Derivatio nominis: szulci — dedicated to Dr. Joachim Szulc of Jagiellonian University who found this and several Middle Triassic coral colonies in the Cracow-Silesia region.

Diagnosis. — Colony built of subparallel corallites 2—3 mm in diameter, with 18—24 septa.

Material. — Several fragments of one large colony (UJ 34P/2a-e); 2 thin sections (UJ 7/2a, b).

Dimensions:

diameter of colony	about 0.5 m
heigth of colony	about 1 m
length of corallites	about 10 mm
D	2—3 mm
S	(16)24

Description. — Phaceloid colony consisting of numerous, fairly long corallites, circular in transverse sections. Septa are differentiated in three orders. The S1 septa are distinctly thicker than the others and they reach 2/3 of the length radius. S2 slightly shorter, S3 very short and thin. Septal faces ornamented with granulae. Wall and epitheca are thin. Endotheca composed of large dissepiments. Budding lateral, extracalicular, or less frequently — intracalicular. Columella absent. Microstructure not preserved.

Remarks. — Our species differs from all so far known species of this genus by its distinctly smaller corallites.

Occurrence. — Cracow-Silesia region: Tarnów Opolski — Karchowice Beds (uppermost Lower Muschelkalk).

¹) In the paper, the taxonomic position of Volzeiidae is accepted after Cuif (1974) and Beauvais (1981) and not Melnikova (1984b).

Fig. 5. Volzeia szulci sp. n. Specimen UJ 34P/2: A corallite transverse sections showing septal arrangement; B longitudinal section; C most common modes of budding

Suborder Archaeocoeniina Alloiteau, 1952 Family uncertain Genus Coelocoenia Duncan, 1866, emend. Volz, 1896 Coelocoenia cf. decipiens (Laube, 1865) (pl. 4: 4a-c)

1896. Coelocoenia decipiens (Laube); Volz: 84, pl. 10: 5. 1972. Coelocoenia decipiens (Laube); Cuif: 271, figs. 27 and 28.

Material. — One fragment of colony (UJ 34P/3). Dimensions (in mm):

Specimer	n No. UJ 34P/3		Coelocoenia assmanni Weissermel, 1925
d	2.0-3.0	d	2.0-3.5
D	3.0-3.5 (4.5)	D	5.0-6.0
сс	2.53.5	S	44-48 in the essential wall
S	28ca. 40		18 in the pseudotheca

Description. — Fragment of subcerioid colony of plocoid aspect. This aspect is due to double wall consisting of an internal pseudotheca (dissepimental stereozone) of circular outline, and external essential wall of polygonal outline. Radial elements compact, nonconfluent, belonging to 2—3 orders and differentiated in 8—9 systems. Columella absent. Endotheca consists of subtabular elements. Microstructure not preserved. Remarks. — The species differs from Coelocoenia (?) assmanni Weissermel, 1925 from Kamień Śląski, by smaller dimensions of coralites and slightly smaller number of septa.

Occurrence. — Cracow-Silesia region: Stare Gliny near Olkusz — Diplopora dolomite (Middle Muschelkalk). Carnian Alps — St. Cassian Beds (Carnian).

Genus Cyathocoenia Duncan, 1867 Cyathocoenia sp. (pl. 4: 3a, b)

Material. — Three fragments of colonies (UJ 34P/4—6). Dimensions (in mm):

- d 1.5-2.0 c--c 2.5-3.5 (4.0)
- S 22-about 36
- Sd 8—10/2

Description. — Fragments of plocoid colonies of cerioid aspect. Calices subcircular or slightly oval. Septa nonconfluent and subconfluent, arranged in 3—4 orders. At places, at the distal-inner edge, they dissociate into isolated trabeculae. Six S1 septa reach the calicular centre; S2 are slightly shorter than S1. S3 are shorter than S2 and are frequently fused with inner edge to the faces of S2. Columella small. Endotheca composed of subtabular, subhorizontal elements. The wall is parathecal. Peritheca not preserved. Budding intercalicular. Microstructure not preserved.

Remarks. — The species is very close to Cyathocoenia schafhaeutli (Winkler), known from the Upper Triassic deposits (Norian, Rhaetian) of the Tethyan area from which it differs in having less developed S2 septa. Our species most frequently has 6—8 S1 and 6—8 slightly shorter S2; C. schafhaeutli has 12—16 S1.

Occurrence. — Cracow-Silesia region: Stare Gliny near Olkusz — Diplopora Dolomites (Middle Muschelkalk).

Suborder Faviina Vaughan et Wells, 1943 Family Pamiroseriidae Melnikova, 1984 Genus Pamiroseris Melnikova, 1971

Systematic position of the genus Pamiroseris is still not established. This genus was ranged in the suborder Fugiina Duncan, family Thamnasteriidae Vaughan et Wells (Melnikova 1971, 1975; Beauvais 1981), in the family Astraeomorphidae Frech (Roniewicz 1974), in familia incerta (Morycowa, Roniewicz, 1986) and recently in the suborder Cuifastraeina Melnikova, family Pamiroseriidae Melnikova (Melnikova 1984). In this paper the family Pamiroseriidae, including the genus Pamiroseris, is included into the suborder Faviina Vaughan et Wells (= Astraeoina Alloiteau, 1952). This decision is based on microstructure of the pamiroseriid skeleton. Radial elements of pamiroseriids are compact, composed of one medium sized (up to ca. 150 µm) series of simple trabeculae, usually vertical or only slightly inclined towards the axis and the periphery of the corallite. The trabeculae are usually transversally flattened, sometimes lateral axes of small trabeculae may be seen to depart from the axis of the main trabecula. The microstructure of the radial elements resembles the microstructure of Faviina, e.g. Clausastraeidae (Morycowa 1964, fig. 15; pl. 16: 2c; Morycowa 1971, fig. 7a), in places of Montlivaltiidae (Morycowa 1971, fig. 7a) as well as of Isastraeidae (Roniewicz 1982, pl. 69: 1a-c).

Pamiroseris silesiaca (Beyrich, 1852)

(pl. 5: 1a-c, 2a-d, 3, 4a-b; pl. 6: 2a-b; pl. 7: 3a, b; fig. 6; tab. 3, 4)

```
v.1852. Thamnastraea Silesiaca Beyrich: 217.
```

```
?1859. Thamnastraea Bolognae Schauroth: 285-286, pl. 1: 1a, 1b.
```

1865. Thamnastraea silesiaca Beyrich; Eck: 86, pl. 1: 3a, 3b.

1870. Thamnastraea silesiaca Beyrich; Roemer: 11, fig. 7.

1879. Thamnastraea silesiaca Beyrich; Eck: 255-256.

?1906. Thamnastraea silesiaca Beyrich; Ahlburg: 82.

1925. Thamnastraea silesiaca Beyrich; Weissermel: 4-9, pl. 1: 1 and 3 (not fig. 2), text - fig. 1.

v.1925. Thamnastraea silesiaca n. var. stichophila Weissermel: 9-10, pl. 1: 4.

1928. Thamnastraea silesiaca Beyrich; Schmidt: 118, fig. 221.

1928. Thamnastraea silesiaca n. var. stichophila Weissermel; Schmidt: 118, fig. 222.

1937. Thamnastraea silesiaca Beyrich; Assmann: 15, pl. 3: 1.

1937. Thamnastraea silesiaca Beyrich var. stichophila Weissermel; Assmann: 15, pl. 3: 2.

1938. Thamnastraea silesiaca Beyrich; Schmidt: 16, fig. 221.

1984. Pamiroseris cf silesiaca (Beyrich); Deng Zhanqiu and Kong Lei: 490, pl. 2: 10, 11.

1986. Pamiroseris silesiaca (Beyrich); Morycowa, Roniewicz: 38, pl. 6: 1-4.

Material. -23 specimens, including small fragments and natural casts of colonies (UJ 34P/7-29); 9 thin sections (UJ7/7-12).

Dimensions (in mm):

d	(1.3) 1.5-2.0 (2.5)
c—c: in series	1.5-3.0
between series	2.5-3.5 (4.0-4.5)
S	18-24 (26) ((36))
Sd	6-8 per 2
diameter of colony (UJ 34/29)	54×27 max.
height of colony (UJ 34/29)	10 max.
Decemination Calenies them	manterial Innellan

Description. — Colonies thamnasterioid, lamellar, often incrusting. Calices fairly deep, mainly in central parts of colonies. Corallites often ordered in short series, generally at the peripheral zones. Radial elements compact, thin, confluent, belonging to 2—3, less frequently 4 orders. From eight to fourteen S1 septa reach the centre of corallite. Their thickness in intercalicular spaces is usually similar less frequently they are slightly differentiated (more or less each second is thinner). Inner margin of radial elements has short paliform projections. Septal faces granulated (granulae

Fig. 6. Pamiroseris silesiaca (Beyrich). Specimen UJ 34P/7: A longitudinal section; B septal ornamentation in transverse section; dis. dissepiments

Table 3

Comparison of several genera of thamnasterioid corals described from Triassic deposits

FAMILY	GENUS	ORNAMENTATION OF RADIAL ELEMENTS a-transv. sec. b-lat. surf.	COLUMELLA a – transv. sec. b – longitud, sec.	RADIAL ELEMENTS longitud. sec.	TYPE SPECIES, OCCURRENCE:
THAMN- ASTRAEIDAE Vaughan & Wells, 1943	THAMNASTERIA Lesauvage, 1823	a - I a a a a a a a a a a a a a a a a a	a voi	TAF	ASTRAEA DENDROIDEA Lamouroux, 1821 DEPART. MEUSE: SEQUANIAN
CUIF- ASTRAEIDAE Meln., 1983	CUIFASTRAEA Melnikova, 1983		a ooo		CUIFASTRAEA GRANULATA Mein., 1983 SE PAMIR: LATE NORIAN
TROPI – ASTRAEIDAE Mein., 1984	CHEVALIERIA Melnikova, 1984		a °° b ~~~~		CHEVALIERIA GRANDIS Mein., 1984 SE PAMIR: LATE NORIAN
PAMIRO- SERIIDAE Meln., 1984	PAMIROSERIS Melnikova, 1971	a IIII 00000000000000000000000000000000	a ooo		THAMNASTRAEA MERIANI Stoppani, 1858 LOMBARDY: RHAETIAN

spiniform and pennuliform). Columella papillar, feebly developed. Endotheca abundant, vesicular. Budding intracalicular.

Microstructure of the skeleton is poorly preserved. The traces of microstructure and ornamentation of the radial elements permit to infer that they were built of individual, distinct trabeculae, arranged in one divergent system.

Remarks. — The preserved microstructure traces, the ornamentation of radial elements, the development of columella and the characteristics of endotheca indicate that the discussed species does not belong to *Thamnasteria* Lesauvage, 1823 (incorrectly — *Thamnastraea*) but it belongs to the genus *Pamiroseris* Melnikova (see Table 3).

Weissermel (1925) described Thamnastraea silesiaca Beyrich and Th. silesiaca n. var. stichophila from the Muschelkalk of the Upper Silesia. According to him, Thamnastraea silesiaca silesiaca differs from Th. silesiaca stichophila by the presence of calicular series within which individual calices are either distinct or more or less coalesce into a common calicular fossa.

The material studied by present author includes a natural cast of the upper surface of the colony (pl. 7: 3a, b) and a colony fragment (pl. 5: 4ab) featured by, both, clearly distinct corallites and series of subdistinct corallites. It should be noted that short series (of 2—3 calices) of feebly marked calices occur in many colonies of *P. si-lesiaca*, especially in their most peripheral parts.

The review of calicular surfaces of *Pamiroseris silesiaca* from my collection and illustrations in papers of other authors, reveals their differentiation with respect to the calice depth. The forms with fairly deep calices (see pl. 5: 1a—c, 3; pl. 7: 3a, b) and those with superficial calices (pl. 5: 4a, b; pl. 6: 2a, b) are observed. This feature is regarded partly as the intraspecific variability, partly as dependent on the preservation of specimens. It should be stressed that the dimensions of corallites, dis-

Characteristics	S	c - c <i>a</i> in series
Species		b between series
Pamiroseris silesiaca	18-24 (26) ((36))	a 1.53.0
(Beyrich)		<i>b</i> 2.5-3.5 (4.0-4.5)
Pamiroseris sp.	(21) 24—32 (36)	a 3.0-3.5 (chaotic)
		b (1.5) 2.5-3.5
Pamiroseris rectilamellosa	after Frech 1890:	after Frech 1890, pl. 16,
(Winkler)	20—26	ca. 5.0-9.0
	after Roniewicz 1974:	
	(22) 24—35 (45)	ca. 4.0—7.0
	after Melnikova 1975:	
	1840	ca. 4.0-10
	after Cuif 1976	
	30—35	ca. 6.08.0
Pamiroseris rectilamellosa var.	after Frech 1890:	after Frech 1890, pl. 17,
minor (Frech)	1820	fig. 12: ca. 2.0-3.0

Table 4

Pamiroseris silesiaca (Beyrich) and similar species

tances between their centres, and to a less degree, the numbers of septa — all differ from one colony to another. Above, the extremal dimensions are presented.

The described species reveals greatest affinities with the Upper Triassic species *Pamiroseris rectilamellosa* (Winkler, 1861) from which it differs by its smaller corallites and less numerous radial elements (Table 4). In its dimensions and number of septa it resembles a Rhaetian form described by Frech (1890) as *Thamnastraea rectilamellosa minor*.

Pamiroseris silesiaca has similar corallite dimensions and only slightly smaller number of septa than Pamiroseris sp. The difference between both forms consists mainly in the arrangement and course of radial elements. In *P. silesiaca* these are usually parallel to one another and rectilinear, arched or S-like. In Pamiroseris sp. they are usually arranged radially in intercalicular spaces; radial elements of neighbouring corallites fuse at some angle (pl. 6: 1a—b) what results in polygonal outline of corallites and a subcerioid-thamnasterioid aspect of colony.

The synonymy of Pamiroseris silesiaca includes Thamnastraea bolognae Schauroth from the Anisian of the Alps, on the basis of literature data (Eck 1865, Weissermel 1925). Flügel (1961) described Thamnasteria sp. aff. T. bolognae Schauroth from the Anisian of the Alps (Stuaria Kalk). This species differs from P. silesiaca by its larger corallites and higher number of septa. It seems moreover, that this thamnasterioid coral (l.c., fig. 2) belongs neither to the genus Thamnasteria nor to the genus Pamiroseris.

I wish to note that not all specimens of *Thamnastraea silesiaca* from the Weissermel collection belong to the genus *Pamiroseris*.

Occurrence. — Cracow-Silesia region: Kamień Śląski near Opole (12 specimens) and Izbicko near Opole (one specimen) — Karchowice Beds (uppermost Lower Muschelkalk); Stare Gliny near Olkusz (6 specimens) and Zawiercie (4 specimens) — Diplopora Dolomite (middle Muschelkalk).

Occurrences known from literature: Upper Silesia (17 specimens collected from outcrops and shafts): Zabrze-Mikulczyce, Bytom, Tarnowskie Góry, area of Jaworzno — Górażdże Beds, Karchowice Beds, *Diplopora* Dolomite and Ore-bearing Dolomite (Lower and Middle Muschelkalk): Lower Silesia (7 specimens): Osiecznica near Bolesławiec — *Terebratula* Beds (Lower Muschelkalk); GDR and FRG: Rüdersdorf, Würzburg, Feudenstadt am Schwarzwald — Lower Muschelkalk; S Alps (Recoaro) and S China in Guizhou province — Anisian (see also Qi Wentog 1984).

Pamiroseris sp. (pl. 6: 1a—b; fig. 7)

Material. — One colony preserved as natural cast (UJ 34P/30), one colony fragment (UJ 34P/31).

90×45
1,5—2,0
3,0—3,5
2,5-3,5
(21) 24-32 (36)
7-8/2

Description. — Thamnasterioid colony, subcerioid-thamnasterioid in aspect. Calices deep. Corallites chaotically arranged or in short series of 2—4 calices. Radial elements thin, confluent, less frequently subconfluent, between neighbouring individuals fused at some angle. The fusing results in formation of more or less distinctly pronounced

boundary between corallites, and in subcerioidal aspect of the colonies. In the intercalicular spaces, S3 may be slightly thinner than the other septa. In the calice, the S1 approach the centre, the S2 are slightly shorter or only slightly thinner, the S3 reach half the length of S1. Well preserved natural casts suggest that lateral surfaces of septa were finely granulated. The inner margin of S1 has fine trabecular offsets. Columella papilar, very poorly developed. Endotheca vesicular. Budding intra- rarely intercalicular.

Fig. 7. Pamiroseris sp. Specimen UJ 34P/30: corallite morphology shown on the natural cast of the calicular surface section; S: 1, 2, 3 order of radial elements

Remarks. — Pamiroseris sp. differs from P. silesiaca Beyrich by its slightly higher number of radial elements, and by their usually radial, not parallel arrangement in intercalicular spaces. Slightly different is also the aspect of the colony upper surface. In Pamiroseris sp. it is subcerioid-thamnasterioid, whilst in P. silesiaca — thamnasterioid or at places thamnasterioid.

Occurrence. — Cracow-Silesia region: Pogorzyce near Chrzanów — Diplopora Dolomite (Middle Muschelkalk).

Genus Morycastraea Melnikova, 1984 Morycastraea opoliensis sp. n. (pl. 7: 1a-c; 2a, b; fig. 8)

Syntypi: The specimens UJ 34P/32—33; pl. 7: 1a—c; 2a, b. Stratum typicum: Karchowice Beds — uppermost Lower Muschelkalk. Locus typicus: Kamień Śląski near Opole.

Derivatio nominis: opoliensis — after Opole, the town in Silesia.

Diagnosis. — A Morycastraea with phaceloid corallites about 2.0 mm in diameter, 40—50 radial elements and thamnasterioid corallites with about 21—24 radial elements. Columella small, complex.

Material. — One small colony (UJ 34P/32), one fragment of colony (UJ 34P/33), one thin section (UJ 7/33).

Dimensions (in mm):	
diameter of the colony	about 6.5×6.5
height of the colony	6.0
d	2.0-2.2

\mathbf{S}	in	phaceloid corallites	40-	-50
\mathbf{S}	in	thamnasterioid corallites	(18)	21—24
S	1		4	5/1

Description. — Phacelo-thamnasterioid small colony. Calices shallow, both of phaceloid and thamnasterioid forms. Radial elements compact. In phaceloid corallites they belong to 3-4 orders. The radial elements are equally thick in peripheral parts of corallites. 10-12 S1 reach the corallite centre. Distal edge of septa regularly denticulate (teeth subcircular or transversally oval), inner edge with short paliform offsets; lateral faces granulated. Columella composed of one trabecular nodule and a crown of short paliform offsets of S₁. Endotheca vesicular, well developed. It forms a fairly regular wall "ring" in the peripheral part of corallite. Budding intracalicular.

Fig. 8. Morycastraea opoliensis sp. n. Specimen UJ 34P/33: septal ornamentation in transverse section; col. columella

Remarks. — Morycastrea opoliensis sp. n. differs from M. eximia Melnikova (Melnikova 1984a; Norian of the SE Pamirs) by its much smaller corallite diameters, smaller number of radial elements, and less developed axial structure.

Occurrence. – Cracow-Silesia region: Kamień Śląski near Opole – Karchowice Beds (uppermost Lower Muschelkalk).

Family Cuifastraeidae Melnikova, 1983 Genus Silesiastraea nov.

Species typica: Silesiastraea weissermeli gen. et sp. n.

Derivatio nominis: Silesiastraea — after Silesia — region from which is derived the majority of the studied corals.

Diagnosis. — Meandroid-thamnasterioid colonies. Short series with distinct or subdistinct corallites. Radial elements compact, nonconfluent, subconfluent, less frequently confluent. They are composed of fairly large trabecules (diam. about 100----160 µm) arranged in one divergent system. Costae usually less distinctly developed, at places almost not developed. Distal septal ridge covered with large rounded denticles; internal edge with trabecular projections. Lateral septal faces granulated and ornamented with pennules and menianes, granulated at the edge (fig. 9). Wall feeble, often lacking. Columella trabecular. Endotheca vesicular. Intracalicular budding with indirect linkages.

The genus is monotypic.

Remarks. - The new genus Silesiastrea is included in the family Cuifastraeidae

Melnikova on the basis of the type of its microstructure and the ornamentation of radial elements.

Stratigraphic and geographic range. — Lower and Middle Muschelkalk (Anisian) of the Cracow-Silesia region.

Silesiastraea weissermeli sp. n. (pl. 8: 1a-f; 2a, b; pl. 9: 3a, b; fig. 9)

Syntypes: UJ 34P/34-36, pl. 8: 1a-f; 2a, b; pl. 9: 3ab; fig. 9.

Locus typicus: Kamień Śląski near Opole.

Stratum typicum: Karchowice Beds (lowermost Muschelkalk).

Derivatio nominis: weissermeli — in memory of Waldemar Weissermel who studied Muschelkalk coral fauna of Silesia.

Diagnosis. — Colonies meandroid. Series of two or several coralites with calices distinct and subdistinct. Width of series 3—5 mm. Number of radial elements in adult corallites 22—30. Wall septothecal, locally absent. Columella papillar. Endotheca vesicular, feebly developed.

Fig. 9. Silesiastraea weissermeli gen. et sp. n. Specimen UJ 34P/34: A transverse section of two neighbouring corallites showing peripheral parts of radial elements and dividing wall; B longitudinal section perpendicular to septal blades; C reconstruction of the fragment of septal face with ornamentation; gr. granule, pen pennule, men. meniane, w wall

Material. — Three fragments of colonies (UJ 34P/34—36), 4 thin sections with longitudinal and transverse sections (UJ 7/34—36).

Dimensions (in mm):

Width of series	3.05.0	
c—c in series	1.0-2.5	
S	11—24 (-30)	
Sd	7—8/2	
teeth density (dista	l edge of septa)	3—5/0.5

Description. — The characteristics given in the diagnosis of the genus and species should be supplemented with the following: radial elements belong to two or three orders, irregularly distributed. S3 are often slightly thinner than S1 and S2. Few septa S1 have strong rhopaloid thickenings on the inner edge. Near the distal edge the granules on lateral septal surfaces are arranged in more or less vertical rows. In lower parts their pattern is more chaotic. Columella in young specimens is poorly developed, composed of one to three granulae. Adult specimens have columella better developed, composed of axial trabecula and a ring of trabeculae of septal origin. Endotheca composed of wide dissepiments subhorizontal or slightly rised in peripheral area.

Remarks. — This species resembles morphologically the Upper Muschelkalk species, Latimeandra vogelgesangi Eck (generic name changed to Substuoresia in Deng Zhanqui and Kong Lei 1984). Our species is however meandroid-thamnosterioid, with calices shallow and a wall unmarked on calicular surface. Moreover, it has a smaller number of radial elements, and less developed columella. More detailed comparison of these species is impossible without direct comparative studies.

Occurrence. — Cracow-Silesia region: Kamień Śląski near Opole (two specimens) — Karchowice Beds, and Stare Gliny near Olkusz (one specimen) — Diplopora Dolomite.

Family **Tropiastraeidae** Melnikova, 1984 Genus Chevalieria Melnikova, 1984 ?Chevalieria tenuiseptata sp. n. (pl. 9: 1a, b; 2a-c; fig. 10)

Holotypus: UJ 34P/37, pl. 9: 2a-c; fig. 10.

Locus typicus: Kamień Śląski near Opole.

Stratum typicum: Karchowice Beds (Lower Muschelkalk).

Derivatio nominis: tenuiseptata (Lat.) — from thin radial elements.

Diagnosis. — Thamnasterioid colonies. Corallites locally arranged in short series. Distances between centres of corallites in series are 2—3 mm, between series — 3—4 mm. Up to 24 radial elements (6 S1 and S2 in 2 mm). They are uniformly thin in peripheral parts of corallites. Columella week, papillar.

Material. — One fragment of a colony and one natural cast of colony surface (UJ 34P/37—38), two thin sections (UJ 7/37—38).

Dimensions (in mm):

c—c in series	23
c—c between series	3-4
S (adult specimens)	$21 - 24 (S_1 + S_2)$
Sd	6/2
thickness of S_1	about 0.1
dg	35/0.5

~

Description. — Thamnasterioid colonies with corallites arranged locally in short series. Radial elements compact, thin and confluent. They belong to two orders. S1 septa (8—12) reach the centre of corallite, S2 septa are developed more or less regularly and they attain in calice ca. 1/2—3/4 of the S1 length. Distal septal edge with denticles, internal edge with fine denticles. Lateral surfaces ornamented with menianes of mostly even or slightly wavy margins. Fine ornamentation in form of granulae is, however, locally present on the margins. Columella feebly developed, papillar. Endotheca dissepimental, vesicular, poorly developed. Budding mainly intracalicular, less frequently intercalicular.

Microstructure. — The preserved fragments of trabecular outlines suggest that radial elements were composed of rather small trabeculae. There was about five of them on 0.5 mm length. Also noticeable are traces of short axes of lateral trabeculae branching from the axis of the main trabecula. Columella composed of several trabeculae originating from the inner margin of septa.

Fig. 10. A, B, Chevalieria tenuiseptata sp. n. Specimen UJ 34P/37: ornamentation of radial elements in transverse section; A section through septal surface between pennules; B section along the menianes; C Chevalieria grandis Melnikova: ornamentation drawn after thin section No. 2406 (Pamir: Late Norian); gr. granule, men. meniane

Remarks. — The described species is closely related, both in the calice dimensions and in the number of septa, to Pamiroseris silesiaca (Beyrich). It differs, however, in its type of ornamentation: in P. silesiaca this is granular and in Ch. tenuiseptata in the form of menianes. Moreover, the endotheca in P. silesiaca is very rich, and in Ch. tenuiseptata it is very poor.

The author hesitates in assigning this species to the genus *Chevalieria* because of fine ornamentation observed at some places on margins of menianes (transverse section), similar to that in *Cuifastraea* Melnikova. Perhaps with better preserved material, it will be possible to decide whether this species belongs to the genus *Chevalieria* or another genus with finely ornamented menianes, as e.g. *Cuifastraea*.

Occurrence. — Cracow-Silesia region: Kamień Śląski near Opole — Karchowice Beds (Lower Muschelkalk).

Suborder and family uncertain Genus Eckastraea nov.

Species typica: Isastraea prisca Weissermel, 1925.

Derivatio nominis: Eckastraea — in memory of Heinrich Eck, who gave (1865) the first complete stratigraphical scheme of the Triassic of Silesia, providing thus the basis for all further studies.

Table 5

Eckastraea gen. n. and similar genera

Family	Features Genera	R a d i a 1 Trabeculae arranged in series	elements Ornamentation of lateral surface	Columella	Wall.	Endotheca	Budding
Familia incerta	Eckastraea gen.n.	Trabeculae small / about 70-80 بسر	granulae small, sharp, rounded or elongated, sub- perpendicular to the distal margin	_	W Septotheca	RA	
lsastrae- idae Koby	Isastraea M.Edw. et H.,1851	Trabeculae variable in diameter /up to 300- 450 µm after Roniewicz 1982/	granulation fuses vertically to form carinae		Septotheca	R	E
Andrazell- idae Meln.	Gablonzeria Cuif, 1976	Trabeculae small /about 70-150 µm after Cuif 1976: fig.21,22/	granulae spiniform arranged irregular- ly	-	Essential wall	MA	
Distichophylli- idae Beauv.	Distichomean- dra Cuif, 1976	Midline	granulae sharp arranged in vertical series		Septotheca		

Fig. 11. Eckastraea prisca (Weissermel). Specimen UJ 34P/40: A schematic drawing of a corallite in transverse section showing septal arrangement; B longitudinal section of corallite; C calicular surface showing a mode of budding; jc juvenile corallites, w wall, SI radial elements of the 1st order; gr. granules, dis. end. endothecal dissepiments

Diagnosis. — Cerioid colonies. Radial elements are compact, free, nonconfluent or subconfluent. They are composed of simple, fairly small trabeculae (about 70— 80μ m) arranged in series. Ornamentation of the distal margins of septa in form of fine, numerous, rounded or transversally oval teeth. Axial margin is very slightly rhopaloid, smooth or very minutely dentate. Lateral surfaces of septa are ornamented with numerous small, rounded or slightly elongated granules, arranged in subvertical series. Wall feeble, septothecal of zigzag course and originated from peripheral margins of septa. Endotheca composed of fairly large vesicular dissepiments running obliquely in the peripheral area of corallite and subhorizontally at its centre. Columella lacking. Budding intracalicular, marginal. One, or simultaneously several buds arranged circularly, formed in a calice.

Stratigraphic and geographic range. — Lower and Middle Muschelkalk (= Anisian) of the Silesian region.

Remarks. — The genera of closest morphological ressemblance are: Isastrea M. Edw. et H., Gablonzeria Cuif and Distichomeandra Cuif. Eckastraea differs from them, apart of other features, in the mode of budding (see table 5).

In the Weissermel collection there are two poorly preserved specimens of *Isastraea* prisca from the Karchowice Beds exposed at Kamień Śląski (one in the Humboldt Universität Museum f. Naturkunde, Berlin, and the other in the Zentrales Geologisches Institut Aussenstelle Bernau). The only specimen illustrated by Weissermel (1925: pl. 1: 9), thus, constituting the holotype of the type species of *Eckastraea*, appears to show among other features a budding similar to that in the specimens described below.

Eckastraea prisca (Weissermel, 1925) (pl. 10: 1a, b; 2a, b; fig. 11; tab. 5)

v.1925. Isastraea prisca Weissermel: 18—19, pl. 1: 9 1938. Isastraea prisca Weissermel; Schmidt: 15, fig. 218a. 1937. Isastraea prisca Weissermel; Assmann: 16, pl. 3: 9.

Material.—Three natural casts of upper and lateral surfaces of colonies (UJ 34P/39—41).

Dimensions (in mm):

d (maximum) 4.0-4.5 (6.0)

S (32) 36-46 (48); 6S1+6S2+12S3+nS4 or 12S1+12S

thickness of septa about 0.8-1.30

density of teeth (distal edge) 10-13/1

Description. — Corallites polygonal, separated by distinct, thin, zigzag, septothecal wall. Calices deep. Septa very thin, arranged in radial symmetry. They belong to three or four orders. S1 and S2 are equal or subequal in length; they reach the corallite centre. S3 are about half the length of S1. S4 are developed only in adult corallites. Endotheca dissepimental. The features of the septal ornamentation, structure of endotheca and type of budding are given in the diagnosis of the genus.

Occurrence. — Cracow-Silesia region. Stare Gliny near Olkusz — Diplopora Dolomite (Middle Muschelkalk). The specimens studied by Weissermel (1925) and then quoted by Assman (1937) and Schmidt (1938) come from Kamień Śląski near Opole — Karchowice Beds.

REFERENCES

ALLOITEAU, J. 1952. Madréporaires post-paleozoïques. In: J. Piveteau (ed.). — Traité de Paléontologie, 539—684, Paris.

- AHLBURG, J. 1906. Die Trias im südlichen Oberschlesien. Abh. Preuss. Geol. Landes. Bergakad., N.F., 50, 3—156.
- ASSMANN, P. 1937. Revision der Fauna der Wirbellosen der oberschlesischen Trias. Abh. Preuss. Geol. L.-A., N.F., 170, 5—134.

- 1944. Die Stratigraphie der Oberschlesischen Trias, Teil II, Der Muschelkalk. Abh. Reichs. Bodenforsch., N.F., 208, 1-125.
- BEAUVAIS, L. 1981. Sur la taxinomie des Madréporaires mésozoïques. Acta Palaeont. Polonica, 25, 3—4 (1980), 345—360.
- BEYRICH, E. 1852. Ueber das Vorkommen von Korallen und Schwämmen im Muschelkalk ausserhalb der Alpen (Vortag). — Z. deutsch. geol. Ges., 4, 210—219.
- CUIF, J.-P. 1966. Structure de quelques Polypiers phacéloïdes triassiques. Bull. Soc. Géol. France, sér. 7, 8, 125—132.
 - 1972. Recherches sur les Madréporaires du Trias. I. Famille des Stylophyllidae. — Bull. Mus. Nation. Hist. Nat., sér. 3, Sci. Terre, 17, 211—291.
 - 1974. Recherches sur les Madréporaires du Trias. II. Astraeoida. Révision des genres Montlivaltia et Thecosmilia. Étude de quelques types structuraux du Turquie. — Ibidem, 40, 293—400.
 - 1976. Recherches sur les Madréporaires du Trias. IV. Formes cériomeandroïdes et thamnastérioïdes du Trias des Alpes et du Taurus sud anatolien. — Ibidem, 53, 65—195.
- DENG ZHANQIU and KONG LEI. 1984. Middle Triassic corals and sponges southern Guizhou and eastern Yunnan. — Acta Geologica Sinica, 23, 4, 489—504.
- DUNKER, W. 1851. Über die im Muschelkalk von Oberschlesien bis jetzt gefunden Mollusken. — Palaeontographica, 1.
- DZUŁYŃSKI, S. and KUBICZ, A. 1971. Recrystallized and disaggregated limestones in the Triassic of Silesia. — Ann. Soc. Geol. Pol., 41, 3, 519—530.
- ECK, H. 1865. Ueber die Formationen des bunten Sandsteins und des Muschelkalk in Oberschlesien und ihre Versteinenrungen, 1—148. Berlin.
 - 1879. Ueber einige Triasversteinerungen (Korallen, Encrinen, Asterien, Ammoniten, "Stylorhynchus"). Z. deutsch. geol. Ges., 31, 254—281.
- ELIAŠOVÁ, H. 1978. La redéfinition de l'ordre Hexanthiniaria Montanaro Gallitelli, 1975 (Zoantharia). — Vest. Ústř. Úst. geol., 53, 89—101.
- FLÜGEL, E. 1961. Eine Koralle aus dem schwarzen Stuaria-Kalk (Anis) des Tretto (Vicentin). Verh. Geol. Bundesanst., 1—3, 79—83.
 - 1982. Evolution of Triassic Reefs: Current Concepts and Problems; Entwicklung der Trias-Riffe: Kenntnisstand und Probleme. — Facies, 6, 297—328.
- FRECH, F. 1890. Die Korallenfauna der Trias. Die Korallen der juvavischen Triasprovinz. — Palaeontographica, 37, 1—199.
- KOLOSVARY, G. 1958. Über die Trias Korallen fauna aus CSSR.—Geol. prace, 19—24.
 - 1966. Über Triaskorallenfauna Ungarns. Acta Biol., n.s., 3—4, 125—137.
- LAUBE, G. 1865. Die Fauna der Schichten von St. Cassian., I Abt. Denkschr. Akad. Wiss., 24, 223—296.
- [MELNIKOVA, G.] МЕЛЬНИКОВА, Г. 1971. Новые данные о морфологии, микроструктуре и систематике позднетриасовых Thamnasterioidea. — Палеонт. Ж., 2, 21—35.
 - 1972. К ревизии некоторых позднетриасовых и раннеюрских Stylophyllidae. — *Ibidem*, 2, 53—63.
 - 1975. Позднетриасовые склерактинии юго-восточного Памира. Акад. Наук Тадж. С.С.Р. Инст. Геол., 3—234. Изд. "Дониш", Душанбе.
 - 1983. Новые позднетриасовые склерактинии Памира Палеонт. Ж., 1, 45—52.
 - 1984а. Новые позднетриасовые кораллы отриада Archaeocoeniida Alloiteau, 1952 юго-восточного Памира. *In*: Новые виды ископаемой флоры и фауны Таджикистана, 42—55. Изд. "Дониш", Душанбе.

- 1984b. Новые позднетриасовые кораллы подотриада Protoheterastraeina Melnikova, subord. nov. юго-восточного Памира. *Ibidem*, 56—74.
- MORYCOWA, E. 1964. Hexacoralla des couches de Grodziszcze (Néocomien, Carpathes). — Acta Palaeont. Polonica, 9, 1, 3—114.
 - 1971. Hexacorallia et Octocorallia du Crétacé inférieur de Rarău (Carpathes Orientales Roumaines). — Ibidem, 16, 1—2, 3—149.
 - 1974. Koralowce z warstw karchowickich z Kamienia Śląskiego k. Opola. –
 Przewodnik 46 Zjazdu PTG, Opole, 2–14 września, 163–165, Warszawa.
 - 1981. Koralowce w utworach środkowego triasu Wyżyny Śląsko-Krakowskiej. In: Fauna i flora triasu obrzeżenia Gór Świętokrzyskich i Wyżyny Śląsko-Krakowskiej. – Materiały V Krajowej Konferencji Paleontologów, Kielce-Sosnowiec, 24–30.
 - and RONIEWICZ, E. 1986. Class Anthozoa Ehrenberg, 1834. In: L. Malinowska (ed.), Geology of Poland, 3, Atlas of guide and characteristic fossils, part 2a, Mesozoic, Triassic, 36-39. Wyd. Geol. Warszawa.
- QI WENTOG. 1984. An Anisian coral Fauna in Guizhou South China. Fourth International Symposium on Fossil Cnidaria, Washington, D. C., August 1983. — Palaeontographica Americana, 54,
- ROEMER, F. 1870. Geologie von Oberschlesien. Pls. 1-50, Breslau.
- RONIEWICZ, E. 1974. Rhaetian corals of the Tatra Mts. Acta Geol. Polonica, 24, 1, 97—116.
 - 1982. Pennular and non-pennular Jurassis scleractinians some examples. Acta Palaeont. Polonica, 27, 1-4, 157-193.
- SCHAUROTH, C. Frh. 1859. Kritisches Verzeichnis der Versteinerungen der Trias im Vicentinischen. — Sitz. Ber. math.-nat. Kl. Akad. Wiss., 34, 285—356.
- SCHMIDT, M. 1928. Die Lebewelt unserer Trias, 5-461. Oehringen.
- 1938. Die Lebewelt unserer Trias, 5—144, Oehringen.
- SIEDLECKI, S. 1949. Zagadnienia stratygrafii morskich osadów triasu krakowskiego (Problems of stratigraphy of marine Triassic in the Cracow area). — An. Soc. Geol. Pol., 18, 191—243.
 - 1952. Utwory geologiczne obszaru między Chrzanowem a Kwaczałą. Biul. Państw. Inst. Geol., 60, 1—153.
- STANLEY, G. D., Jr. 1986. Late Triassic coelenterate faunas of Western Idaho and northeastern Oregon: Implications for biostratigraphy and paleogeography. — U.S. Geol. Surv. Prof. Pap. 1435, 23—36.
- TRAMMER, J. 1980. The isochronous synsedimentary movements at the Anisian/Ladinian boundary in the Muschelkalk basin and the Alps. — Riv. Ital. Paleont., 85, 3-4, 931-936.
- VAUGHAN, T. W. and WELLS, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geol. Soc. Amer., Spec. Pap., 44, 1-63.
- VOLZ, W. 1896. Die Korallen der Schichten von St. Cassian Sudtirol. Palaeontographica, 43, 1–124.
- WEISSERMEL, W. 1925. Die Korallen des deutschen Muschelkalk. I. Unterer Muschelkalk. — Jb. Preuss. Geol. Landesanst., 46, 1—33.
- 1928. Die Korallen des deutschen Muschelkalk. II. Ober Muschelkalk. Ibidem, 224—238.
- ZAWIDZKA, K. 1975. Conodont stratigraphy and sedimentary environment of the Muschelkalk in the Upper Silesia.— Acta Geol. Polonica, 25, 2, 217—256.

ELŻBIETA MORYCOWA

ŚRODKOWOTRIASOWE SCLERACTINIA Z REGIONU ŚLĄSKO-KRAKOWSKIEGO

Streszczenie

Występowanie koralowców w utworach wapienia muszlowego na obszarze Śląska znane jest już od ponad 130 lat. Były one opisywane lub tylko cytowane w pracach: Beyricha (1852), Ecka (1865, 1879), Roemera (1870), Ahlburga (1906), Weissermela (1925), Schmidta (1928, 1938), Assmanna (1937) i Morycowej (1974, 1981; Morycowa, Roniewicz 1986). Największe znaczenie w tym względzie ma praca Weissermela (*l.c.*), w której autor opisał wszystkie gatunki znane dotychczas z wapienia muszlowego Śląska. Koralowce opisane przez wymienionych autorów pochodzą z wapieni, wapieni dolomitycznych i dolomitów należących do facji epikontynentalnej, środkowoeuropejskiej. Zostały one znalezione w warstwach górażdżańskich (rzadkie wystąpienia), karchowickich (częste) i w dolomicie diploporowym (częste). Podawane są też z dolomitów kruszconośnych dolnego i częściowo środkowego wapienia muszlowego (tabl. 1 i 2). Wiek osadów z koralowcami, w nawiązaniu do podziału biostratygraficznego (Zawidzka 1975, Trammer 1980), odpowiada anizykowi, ściślej pelsonowi — wczesnemu illyrowi (tabl. 1).

Opracowany przez Weissermela zespół koralowców triasowych Śląska jest ubogi zarówno pod względem okazów jak i gatunków (tabl. 2). Autorka dysponuje nowym zbiorem koralowców z regionu śląsko-krakowskiego (tabl. 1, 2). Zostały one zebrane z warstw karchowickich, które odsłaniały się w starym kamieniołomie w Kamieniu Śląskim koło Opola oraz z odsłonięć w Tarnowie Opolskim i Izbicku w rejonie Opola. Okazy koralowców z dolomitu diploporowego pochodzą z kamieniołomów w Starych Glinach koło Klucz (rejon Olkusza) i Pogorzyc k. Chrzanowa oraz z rdzeni wiertniczych otworów Zawiercie — Huta Szkła i Zawiercie-Południe (fig. 1).

Stan zachowania koralowców z wapienia muszlowego obszaru śląsko-krakowskiego jest bardzo zły. Autorka podjęła się jednak ich opracowania gdyż fauna koralowców anizyku jest niezmiernie ważna z punktu widzenia filogenezy tej grupy organizmów. Najstarsze bowiem Scleractinia znane są właśnie z utworów anizyku. W świecie, jak dotychczas, znaleziono zaledwie kilka miejsc występowania koralowców tego wieku (Flügel 1982).

Opracowany zbiór składa się z 41 okazów (tabl. 1), w tym kolonii, ułamków kolonii i odcisków ich powierzchni kielichowych. Kolonie są najczęściej cienkopłytowe, rzadziej faceloidalne i dendroidalne. Szkielety koralowców są przekrystalizowane, często również częściowo zdolomityzowane. W zbiorze tym wyróżniono 10 gatunków, w tym trzy znane z literatury (Coelocoenia cf. decipiens (Laube), Pamiroseris silesiaca (Beyrich) i Eckastraea prisca (Weissermel)), cztery gatunki nowe (Volzeia szulci, Morycastraea opoliensis, Silesiastraea weissermeli i Chevalieria tenuiseptata) oraz trzy pozostawione w nomenklaturze otwartej Stylophyllopsis sp., Cyathocoenia sp. i Pamiroseris sp.). Wprowadzono też dwa nowe rodzaje (Eckastraea i Silesiastraea).

Z utworów wapienia muszlowego regionu śląsko-krakowskiego znamy 19 gatun-

ków koralowców (łącznie z oznaczonymi przez dawnych autorów). Najczęściej, zarówno w starych jak i nowych zbiorach, reprezentowany jest *Pamiroseris silesiaca*. Gatunek ten znany jest z podobnych wiekowo utworów Dolnego Śląska, NRD i RFN (Eck 1879, Schmidt 1938) oraz osadów anizyku Alp (Schauroth 1859, Eck 1879, Weissermel 1925) i z Chin (Ghizhou and Yunnan: Qi Wentog 1984, Deng Zhanqiu and Kong Lei 1984).

Jeden z gatunków przedstawionych w tej pracy (Coelocoenia cf. decipiens) zbliżony jest do gatunku znanego z karniku Alp (Volz 1896, Cuif 1972). Dwa inne gatunki ze zbioru Weissermela ("Thecosmilia" compressa Weiss. i "Th." caespitosa Reuss) znane są z utworów środkowo- bądź późnotriasowych prowincji tetydzkiej (m.in. Frech 1890, Kolosvary 1966) a jeden z nich (Retiophyllia caespitosa, oznaczenie rodzajowe poprawione) też z prowincji pacyficznej (Stanley 1986). Jeśli jednak idzie o ten ostatni, można mieć poważne wątpliwości czy Weissermel dokonał właściwego oznaczenia gatunkowego, zważywszy, że Retiophyllia caespitosa (Reuss) jest gatunkiem charakterystycznym dla późnego noryku.

Opracowany zespół koralowców górnej części dolnego wapienia muszlowego (warstwy karchowickie) reprezentuje prawdopodobnie typ ekologiczny hermatypowy. Koralowce te rozwijały się w basenie sedymentacyjnym w mało sprzyjających warunkach życia. Świadczą o tym niewielkie wymiary kolonii i częsty ich pokrój cienkopłytowy. Środowisko życia tych koralowców było ciepło- i płytkowodne (najprawdopodobniej o głębokości nie przekraczającej 40 m), nieco oddalone od brzegu, o względnie małej energii wody. Za ciepło- i płytkowodnym środowiskiem przemawia zespół koralowców oraz obecność glonów Dasycladaceae. O względnie spokojnym środowisku świadczy typ osadu, w którym koralowce te występują oraz delikatne cienkopłytowe, rzadziej drobnogałązkowe formy kolonii w pozycji życiowej, a także niepokruszone, delikatne skorupki małżów i w wielu przypadkach zachowane dość długie łodyżki liliowców. Osiedlanie się koralowców w basenie sedymentacyjnym warstw karchowickich ułatwiał zapewne obfity detrytus krynoidowy.

W odniesieniu do warunków życia koralowców występujących w utworach środkowego wapienia muszlowego (dolomit diploporowy) można stwierdzić, że asocjacja koralowcowo-glonowa (koralowce prawdopodobnie hermatypowe i glony Dasycladaceae) przemawia również za ciepło- i płytkowodnym środowiskiem ich życia (głębokość do kilkunastu metrów?). Charakter osadów (detrytyczny i onkolitowy) świadczy ponadto o dość znacznej energii ich środowiska. Koralowce w dolomicie diploporowym nie są znajdowane w pozycji życia, są jednak niewątpliwie autochtonicznym składnikiem osadu.

EXPLANATION OF PLATES 1-10

Plate 1

Karchowice Beds

Biomicrites and biomicrosparites (thin sections UJ 7/7—8) from the bioherm (see fig. 2) at Kamień Śląski

1. Annelid tubes. 2, 3. Strongly sparitized gastropod shells. 4. Brachipod shell. 5. Echinoid spine, ostracod and bivalve shells. 6. Fragment of echinoderm skeleton. 7, 8. Crinoid segments.

Plate 2

Karchowice Beds

Biosparite (thin section UJ 7/42) from the bioherm (see fig. 4) at Kamień Śląski 1, 2. Foraminifera (1 ?*Andothyranella*, 2 *Agathammina*). 3. Dasycladacean alga.

Diplopora Dolomite

- 4. a Extra-intradolomicrosparite (thin section UJ 7/41), Stare Gliny; b a detail. D frágments of Devonian sparitic rock.
- 5. a Oncomicrodolosparite with high porosity (UJ 7/51), Pogorzyce near Chrzanów; b a detail.
- 6. Dolosparite with fragment of dasycladacean alga (transverse section, UJ 7/47), Stare Gliny.

Plate 3

Volzeia szulci sp. n.

 Holotype, UJ 34P/2. Tarnów Opolski — Karchowice Beds: a, c, d, transverse sections of colony fragments showing the way of budding (c) and traces of endothecal elements (d); b, f longitudinal sections of colony fragment; e transverse section of corallite.

Plate 4

- Pamiroseris silesiaca (Beyr.), specimen UJ 34P/7: a transverse section (thin section UJ 7/7a) of colony part; b a detail with septal ornamentation visible; c same specimen (thin section UJ 7/7a) showing longitudinal section of septa. Kamień Śląski — Karchowice Beds.
- 2. Stylophyllopsis sp., specimen UJ 34P/1: Kamień Śląski --- Karchowice Beds.
- 3. Cyathocoenia sp., specimen UJ 34P/4: a calicular surface; b a detail. Stare Gliny Diplopora Dolomite.

4. Coelocoenia cf. decipiens (Laube), specimen UJ 34P/3: a, b colony upper surface; c a detail. Stare Gliny — Diplopora Dolomite.

Plate 5

Pamiroseris silesiaca (Beyrich)

- 1. Specimen UJ 34P/20: a natural cast of colony upper surface; b, c details showing traces of septal ornamentation and papillar columella. Zawiercie *Diplopora* Dolomite.
- Specimen UJ 34P/8: a, b longitudinal sections showing thin-walled vesicular dissepiments (thin section UJ 7/8b); c corallites in transverse section (UJ 7/8a); d a detail showing septal granulation. Kamień Śląski – Karchowice Beds.
- 3. Specimen UJ 34P/26: natural cast of calicular surface. Stare Gliny *Diplopora* Dolomite.
- Specimen UJ 34P/10: a calicular surface; b a detail showing shallow calices, Kamień Śląski – Karchowice Beds.

Plate 6

- 1. Pamiroseris sp., specimen UJ 34P/30: a natural cast of calicular surface; b same specimen showing thin septa S1—S2, and fusing of radial elements of neighbouring corallites. Pogorzyce near Chrzanów Diplopora Dolomite.
- 2. Pamiroseris silesiaca (Beyr.), specimen UJ 34P/26: a calicular surface; b a detail showing shallow calices. Stare Gliny Diplopora Dolomite.

Plate 7

- Morycastraea opoliensis sp. n., syntype UJ 34P/33: a cross section of a part of a phaceloid corallite at an early stage of budding with thamnasterioid connections between descendant corallites; b, c same thin section exposing strongly granulated septa (b) and trabecular columella (c; arrow). Kamień Śląski – Karchowice Beds.
- Morycastraea opoliensis sp. n., syntype UJ 34P/32: a two phaceloid corallites; b same specimen in lateral view. Kamień Śląski — Karchowice Beds.
- 3. Pamiroseris silesiaca (Beyr.), specimen UJ 34P/29: a natural cast of calicular surface; b a fragment with subdistinct calicular series visible. Stare Gliny — Diplopora Dolomite.

Plate 8

Silesiastraea weissermeli gen. et sp. n., Kamień Śląski – Karchowice Beds

1. Syntype UJ 34P/34: a, b transverse section of colony part (thin section UJ 7/34a) showing arrangement of corallites and radial elements; c same thin section to show peripheral portion of the corallites and a wall (arrow); d same thin section with central part of corallite showing small trabecular columella; e radial elements in longitudinal section with diverging trabeculae visible (arrow); f longitudinal section perpendicular to septal blades.

2. Same species, UJ 34P/35: a lateral surface of septum with menianes (arrows); b fragment of lateral part of radial element in longitudinal broken section, internal edge (arrow) and divergent trabeculae (double arrow) are seen.

Plate 9

- 1. Chevalieria tenuiseptata sp. n., syntype UJ 34P/38: a natural cast of calicular surface; b a detail showing parallel radial elements. Stare Gliny Diplopora Dolomite.
- Chevalieria tenuiseptata sp. n., syntype UJ 34P/37: a transverse section of colony part (thin section UJ 7/37); b same thin section showing septal granulation (intermeniane space); c same thin section showing radial elements cut in plane of menianes. Kamień Śląski — Karchowice Beds.
- 3. Silesiastraea weissermeli gen. et sp. n., syntype UJ 34P/36: a colony upper surface; b a detail. Stare Gliny — Diplopora Dolomite.

Plate 10

Eckastraea prisca (Weissermel), Stare Gliny — Diplopora Dolomite

- 1. Syntype UJ 34P/39: a natural cast of calicular surface; b same specimen, juvenile corallites are visible (arrow).
- 2. Syntype UJ 34P/40: a natural cast of calicular surface; b a detail showing an adult corallite (arrow) with several juveniles arranged at its circumference.

