Scapular orientation in theropods and basal birds, and the origin of flapping flight

PHIL SENTER

Basal birds such as Archaeopteryx and Confuciusornis are typically portrayed as flapping fliers. However, here I show that shoulder joint orientation in these animals prevented elevation of the humerus above the dorsum, thereby preventing use of the recovery stroke, an important part of flapping flight. In members of the clade Ornithothoraces, which includes extant birds and the extinct avian clade Enantiornithes, the shoulder joint is reoriented to permit elevation of the humerus above the dorsum, permitting flapping flight. Although basal birds may have glided, flapping flight began significantly later in avian evolution than has been thought.

Key words: Theropoda, Aves, Archaeopteryx, flight, flapping flight.

Phil Senter [phil.senter@lsco.edu], Department of Math and Science, Lamar State College at Orange, 410 Front Street, Orange, Texas 76630, United States.

Introduction

Researchers have long debated whether basal birds such as Archaeopteryx were powered flyers. Arguments from feather morphology (Feduccia and Tordoff 1979), osteology (Olson and Feduccia 1979; Feduccia 1993), muscle orientation (Ruben 1991; Rayner 2001), muscle power output (Ruben 1991), and kinematics (Ruben 1991; Brugers and Chiappe 1999) have been used to support the hypothesis that such animals were capable of flapping flight. On the other hand, arguments from feather morphology (Speakman and Thomson 1993), osteology (Ostrom 1976; Vasquez 1992; Ostrom et al. 1999), muscle orientation (Ostrom 1976; Ostrom et al. 1999; Speakman 1993), and muscle power output (Speakman 1993) have also been used to support the opposite hypothesis: that these animals were incapable of flapping flight. All these arguments are moot if the glenoids (shoulder sockets) of basal birds were oriented in just such a manner.

In non-avian dinosaurs, the scapula is positioned laterally to the ribcage, widely separated from the vertebral column, with the flat costal surface facing medially; this orients the glenoid so that the humerus could not be raised above the dorsum for the recovery stroke, an important part of flapping flight (Jenkins 1993; Poore et al. 1997). Here, I present evidence that indicates that the glenoids of basal birds were oriented in just such a manner.

In non-avian dinosaurs, the scapula is positioned laterally to the ribcage, widely separated from the vertebral column, with the flat costal surface facing medially; this orients the glenoid so that it faces ventrally (Fig. 1). In extant birds (Jenkins 1993) and in fossil ornithothoracic birds (Elzanowski 1981; Norell and Clarke 2001; Sanz et al. 2004) the scapula has rotated about its long axis 90° from its orientation in non-avian dinosaurs; the scapula lies dorsal to the ribcage with the glenoid (shoulder socket) facing laterally (Figs. 2D, 3D). This change in orientation allows the avian humerus to be elevated above the dorsum during the recovery stroke (Jenkins 1993; Poore et al. 1997) (Fig. 2D). In contrast, scapular orientation in non-avian dinosaurs prevents elevation of the humerus higher than about half-mast (Gishlick 2001; Carpenter 2002; Senter and Robins 2005) (Fig. 2B, C), which precludes use of the full recovery stroke, hence precludes flapping flight. During fast flight, many birds use a low-amplitude wingbeat that involves a recovery stroke of lesser magnitude than that used in slow flight (Rayner 2001). However, even during fast flight with a low-amplitude wingbeat, the recovery stroke still involves significant elevation of the humerus above the dorsum (Rayner 2001). Therefore, the inability of non-avian dinosaurs to raise the humerus higher than half-mast prevented them from employing powered flight.

The orientation of the scapula in birds basal to the clade Ornithothoraces (e.g., Archaeopteryx and Confuciusornithidae) has been debated. These animals are often portrayed with scapulae that lie dorsal to the vertebral column so that the glenoids face laterally, as in extant birds (Ostrom 1976; Martin 1983; Paul 1988; Jenkins 1993; Hou et al. 1996). However, some authors have opined that in basal birds the scapula occupies the typical theropod position with the glenoid oriented ventrally (Bakker and Galton 1974; Tarsitano and Hecht 1980). Here, these contrary opinions are treated as conflicting hypotheses, and conditions in articulated specimens of non-avian dinosaurs and ornithothoracic birds are used to generate predictions for the two hypotheses.

Institutional abbreviations.—AMNH, American Museum of Natural History, New York City, New York, USA. BMNH, The Natural History Museum, London, United Kingdom. IGM, Mongolian Institute of Geology, Ulaan Baatar, Mongolia. IVPP, Institute of Vertebrate Paleontology and Paleo-
anthropology, Beijing, China. LH, Las Hoyas collection, Universidad Autónoma de Madrid, Madrid, Spain; NGMC, National Geological Museum of China, Beijing, China. PVSJ, Museo de San Juan, San Juan, Argentina; SAM, South African Museum, Cape Town, South Africa; TMM, Texas Memorial Museum, Austin, Texas, USA.

Materials and methods

I observed several articulated dinosaur and skeletons at various museums (cited below with accession numbers), some of which are illustrated in Figs. 1 and 3. Observations from those specimens were supplemented with data from other articulated specimens illustrated in the literature (cited below).

Avian and non-avian theropod furculae were observed in specimens at various museums. The angle between the furcular arms was measured with a protractor, using my own photographs of personally observed specimens and published photos of other specimens (specimens and literature listed in Table 1).

Fig. 1. Scapular position and glenoid orientation in articulated skeletons of non-avian dinosaurs, with glenoids indicated by arrows. A. Dorsal view of the ornithischian dinosaur Psittacosaurus mongoliensis, AMNH 6254, showing lateral position and wide spacing of scapulae. B. Lateral view of the ornithischian dinosaur Centrosaurus apertus, AMNH 5351, showing ventral orientation of glenoid and position of glenoid anteroventral to ribcage. C. Lateral view of the ornithomimid theropod dinosaur Struthiomimus altus, AMNH 5339, showing position of glenoid anteroventral to ribcage. D. The deinonychosaurian theropod dinosaur Velociraptor mongoliensis, IGM 100/976, in dorsal (D1), right lateral (D2), and anterior (D3) views, with the furcula outlined in white for clarity, showing that the scapulae are widely spaced, laterally positioned, and exhibit ventrally oriented glenoids, as in other dinosaurs. Broken white lines in (D1) indicate lateral extremities of vertebral column.

During the decay process in extant birds, in the absence of scavenging by large animals, the pectoral girdle usually remains attached to the thorax until after the head, neck, and femur have detached (Davis and Briggs 1998). Even after scavenging by large animals, the avian head and neck usually detach from the thorax before or at the same time as the pectoral girdle (Oliver and Graham 1994). Therefore, if the decay process in extant birds resembles that of fossil birds and non-avian dinosaurs, it stands to reason that the pectoral girdle is in its natural position in an articulated fossil bird or dinosaur skeleton that retains the head and neck in articulation.

Numerous articulated dinosaur skeletons that are preserved on their sides retain heads, necks, and femurs. Such specimens show that the glenoid is anteroventral to the ribcage and that the scapular blade is lateral to the ribcage. Articulated ornithischian skeletons that show this include specimens of Heterodontosaurus tucki (AMNH 28471, cast of SAM K 1332), Othnielia rex (Galton 1983), Thescelosaurus

Data, hypotheses, and predictions

I observed several articulated dinosaur and skeletons at various museums (cited below with accession numbers), some of which are illustrated in Figs. 1 and 3. Observations from those specimens were supplemented with data from other articulated specimens illustrated in the literature (cited below).

The influence of glenoid morphology and orientation on humeral range of motion was examined by manually manipulating bones and casts of the specimens illustrated in Fig. 2A–C; the resulting data were supplemented with data from previous such studies (Gishlick 2001; Carpenter 2002; Senter and Robins 2005). As in previous studies (Gishlick 2001; Carpenter 2002; Senter and Robins 2005), joint surfaces were presumed to represent the limits of motion. Horizontal metal bars, padded with foam rubber and clamped to chemistry ring stands, were used to pose the humerus for photography, and tracings of the photographs were superimposed to illustrate range of motion (see also Carpenter 2002; Senter and Robins 2005) (Fig. 2).
Edmontosaurus (Sternberg 1940), Parasaurolophus walkeri (Parks 1922), “Procheneosaurus praeceps” (AMNH 5340), Corythosaurus casaurius (AMNH 5240, AMNH 5338), Archiceratops longirostris (Lull 1933), Centrosaurus nasicornis (AMNH 5351), and Styracosaurus albertensis (AMNH 5376) (Fig. 1). In saurischian skeletons, the vertebral column usually curls dorsally after death. Even so, the glenoid remains anteroventral to the ribcage. Articulated saurischian skeletons, preserved on their sides, that show this include specimens of Eoraptor lunensis (TMM 43451-2 [cast of PVSJ 512]), Camarasaurus lentus (Glimore 1925), Gorgosaurus libratus (Lambe 1917), Compsognathus longipes (Bidar et al. 1972; Ostrom 1978), Huaxiagnathus orientalis (Hwang et al. 2004), Sinosauropteryx prima (Currie and Chen 2001), Scipionyx samniticus (Dal Sasso and Signore 1998), Ornithomimus edmontonicus (Parks 1928), Struthiomimus altus (AMNH 5339), Sinornithomimus dongi (Kobayashi et al. 1999), Caudipteryx zoui (Zhou et al. 2000), and Khaan mckennai (IGM 100/1127) (Fig. 1C). The fact that the glenoid remains anteroventral to the ribcage in these specimens, even after the vertebral column has curled dorsally, indicates that the pectoral girdle has remained attached to the vertebral column and has been dragged dorsally along with it, keeping the glenoid approximately in its natural position relative to the ribcage (Fig. 1C).

Articulated dinosaur skeletons preserved on their backs or bellies are less common, but do occur. Salient examples include specimens of the ornithischians Edmontosaurus annectens (AMNH 5060) and Psittacosaurus mongoliensis (AMNH 6254), and the saurischian Velociraptor mongoliensis (IGM 100/976). These show that the scapular blades are widely separated from the vertebral column and lie laterally to the ribcage, so that the glenoids are rather far apart; the flat costal surface of the scapular blade faces medially and the glenoid faces ventrally (Fig. 1A, D).

Deinonychosaurian theropods, the saurischian dinosaurs most closely related to birds (Clark et al. 2002; Senter et al. 2004), are often depicted with scapulae oriented in extant avian fashion: lying along the vertebral column dorsal to the ribcage, with the glenoid dorsal to the ribcage and facing laterally (Paul 1988; Sanz et al. 2004). However, articulated specimens of the deinonychosaur Velociraptor mongoliensis that are preserved in three dimensions show that even in these animals the scapula and glenoid are oriented in typical dinosaurian fashion (Norell and Makovicky 1999; Achenbach 2003) (Fig. 1D). These specimens and an articulated specimen of the deinonychosaur Microraptor zhaoianus (Hwang et al. 2002) also confirm that the scapulae are as widely spaced in deinonychosaurian theropods as they are in other non-avian dinosaurs. According to a recent study (Carpenter 2002), even the scapulae of the non-avian theropod Unenlagia comahuensis, which were previously thought to be oriented like those of ornithothoracine birds (Novas and Puerta 1997), more likely exhibited typical dinosaurian orientation.

Oviraptorid theropods have also been depicted with scapulocoracoids oriented in extant avian fashion (Paul 1988).
As noted by previous authors (Norell and Makovicky 1999), the bony floor of the deinonychosaurian glenoid exhibits a slight extension onto the lateral surface of the scapula, which gives the glenoid more lateral exposure than in more basal theropods. This is also true in other derived coelurosaurian theropod taxa, including ornithomimosaurs (AMNH 6567: Archaeornithomimus asiaticus) and Tanycolagreus (Carpenter et al. 2005). Previous studies have shown that such glenoid morphology allows the humerus of the derived coelurosaur Deinonychus (Gishlick 2001) and Tanycolagreus (Carpenter’s [2002] “cf. Coelurus”) (Carpenter 2002) to be elevated to a subhorizontal position; in contrast, in the more basal theropods Coelophysis and Allosaurus, in which the glenoid floor lacks the lateral extension, humeral elevation is much more limited (Carpenter 2002). My own manual skeletal manipulations—using methods similar to those of Carpenter (2002)—confirm the finding that the slight lateral extension of the glenoid floor allows the humerus to be elevated to a subhorizontal position in derived coelurosaurs (Archaeornithomimus, Bambiraptor), and that humeral elevation is limited in more basal theropods (Acrocanthosaurus), which lack the glenoid floor extension (Fig. 2A–C). However, even with the slight extension onto the lateral surface of the scapula, the glenoid in derived coelurosaurs still faces predominantly ventrally, and the humerus cannot be elevated higher than the dorsum (Gishlick 2001; Carpenter 2002) (Fig. 2).

In contrast to the condition in non-avian dinosaurs, the scapulae of ornithothoracine birds lie close to the vertebral column, dorsal to the ribcage, with the flat costal surface of the scapular blade facing ventrally; in this position, the glenoid faces laterally (Figs. 2D, 3D), allowing the humerus to be elevated high above the dorsum (Jenkins 1993; Poore et al. 1997) (Fig. 2D). Numerous articulated fossils preserved on their backs and bellies confirm that the scapulae are closely spaced, lying close to the vertebral column, in fossil ornithothoracines that retain heads and necks. Examples include specimens of the Mesozoic birds Gobipteryx minuta (Elzanowski 1981), Protopteryx fengningensis (Zhang and Zhou 2000), Eoalulavis hoyasi (LH 13500a), Vescornis hebeiensis (Zhang et al. 2004), and Apsaravis ukaana (Norell and Clarke 2001), the Cenozoic bird Prefica sp. (Feduccia 1999), and roller-like Cenozoic birds from Messel (Peters 1992) (Fig. 3D).

Articulated avian fossils preserved on their sides and retaining the head and neck are less common, but a few exist and confirm that the scapulae remain dorsal to the ribcage in fossil ornithothoracines, even if the vertebral column has bent dorsally after death. Examples include specimens of the Cenozoic birds Palaeotis weigelti, Messelornis cristata (Peters 1992), Gallinuloides wyomingensis, and Rhynchaeites messelensis (Feduccia 1999).

The differences in scapular orientation between non-avian theropods and ornithothoracine birds are related to the morphology of the furcula. In both groups, the tips of the furcula articulate with a region of the scapulocoracoid that is in the vicinity of the glenoid; this region is the acromion pro-
cess of the scapula in non-avian theropods (Chure and Madsen 1996; Norell and Makovicky 1999) and is the acrocoracid process of the coracid in ornithothoracic birds (Ostrom 1976). In ornithothoracic birds, the angle between furcular arms is small (Fig. 4), which makes the furcula narrow, allowing the scapulae to approach the midline. In non-avian theropods, the angle between the furcular arms is large (Figs. 1D3, 4), which makes the furcula wide, preventing the glenoids from approaching the midline and relegating the scapulae to a lateral position along the ribcage (Hwang et al. 2002; Larson and Rigby 2005; Velociraptor mongoliensis: IGM 100/976) (Fig. 1D3).

These data allow the delineation of two hypotheses and their respective predictions, regarding scapular orientation in basal birds:

Hypothesis 1.—The scapulae of basal birds were oriented in typical ornithothoracic bird fashion.

Prediction 1: In articulated specimens of basal birds preserved on their sides, the glenoids lie anteroventral to the ribcage.

Prediction 2: In articulated specimens of basal birds preserved on their backs or bellies, the scapulae are widely spaced, and lie far from the vertebral column.

Prediction 3: The angle between the furcular arms of basal birds is large.

Hypothesis 2.—The scapulae of basal birds were oriented in typical ornithothoracic bird fashion.

Prediction 1: In articulated specimens of basal birds preserved on their sides, the glenoids lie dorsal to the ribcage.

Prediction 2: In articulated specimens of basal birds preserved on their backs or bellies, the scapulae are closely spaced, and lie close to the vertebral column.

Prediction 3: The angle between the furcular arms of basal birds is small.

Testing of the hypotheses

There are six known specimens of the basal bird Archaeopteryx lithographica (Senter and Robins 2003). Of these, the “Berlin specimen” (Dames 1884) and the “Eichstädt speci-

![Fig. 4. Angles between furcular arms in non-avian theropods and birds. Data sources listed in Table 1.](http://app.pan.pl/acta51/app51-305.pdf)
men" (Wellnhofer 1974) are the only two that retain a sufficiently articulated head and neck to evaluate scapular position. Both are preserved on their sides and exhibit glenoids that lie anteroventral to the ribcage (Dames 1884; Wellnhofer 1974) (Fig. 3A, B). This satisfies Prediction 1 of Hypothesis 1. The holotype of the basal bird *Wellnhoferia grandis* is also articulated, retains the head and neck, and is preserved on its side. Its glenoids are also anteroventral to the ribcage (Elżanowski 2001), satisfying Prediction 1 of Hypothesis 1. The basal bird *Confuciusornis sanctus* is known from several articulated specimens preserved on their backs or bellies; in these, the scapulae are widely spaced, some distance from the vertebral column (Chiappe et al. 1999) (Fig. 3C), which satisfies Prediction 2 of Hypothesis 1. The angle between the furcular arms in basal birds is large, broadly overlaps the range for non-avian theropods (Fig. 4), and does not overlap the range for ornithothoracic birds (Fig. 4), which satisfies Prediction 3 of Hypothesis 1.

Conclusion

All of the predictions of Hypothesis 1 are satisfied, whereas none of the predictions of Hypothesis 2 are satisfied. Hypothesis 1 is therefore supported by the evidence, and Hypothesis 2 is not. The scapulae of basal birds were therefore oriented in typical dinosaurian fashion, and not in typical ornithothoracic fashion.

Discussion

Four arguments have previously been advanced in favor of Hypothesis 2. However, all four arguments are based on incorrect assumptions and have yielded an incorrect conclusion. One such argument involved reconstructions of muscle orientations and depended on an interpretation of a bony prominence on the coracoid of *Archaeopteryx* and non-avian theropods (commonly called the “biceps tubercle”) as an origin for the biceps brachii (Ostrom 1976). However, it is now known that the bony prominence in question is a site of convergence between the origins of three muscles, none of which is the biceps brachii (Carpenter 2002).

According to the second argument, the 90° bend in the coracoid of *Archaeopteryx* provides evidence that the scapula was dorsal to the ribcage, with the glenoid facing laterally (Martin 1983). However, a 90° bend also occurs in the coracoids of deinonychosaurian theropods (Xu et al. 1999; Hwang et al. 2002), in which the scapula lies lateral to the ribcage with the glenoid facing ventrally (Hwang et al. 2002; Achenbach 2003) (Fig. 1D).

According to the third argument, the vertebral column of the “Berlin specimen” of *Archaeopteryx* has moved dorsally without dragging the scapulae with it, leaving the scapulae in their original position relative to the slab (Jenkins 1993). In this position, they appear to have originally been dorsal to the ribcage (Fig. 3A). However, as shown above, scapulae are dragged dorsally as the vertebral column moves dorsally in both ornithothoracic and non-avian theropods; in the latter the appearance that the dorsally dragged scapulae were originally dorsal to the vertebral column (Fig. 1C) is an artifact of the dragging. It stands to reason that the same was true for the “Berlin specimen” of *Archaeopteryx*. Heads and necks detach before or along with the pectoral girdle during the decay process in extant birds (Oliver and Graham 1994; Davis and Briggs 1998). Therefore, the fact that the heads and necks of the “Berlin” and “Eichstätt” specimens of *Archaeopteryx* have not detached suggests that the pectoral girdle has not detached either.
According to the fourth argument, overlap between the scapular blades and the proximal ends of the ribs in the holotype of *Wellnhoferia grandis* demonstrates that its scapulae were dorsal to the ribcage (Jenkins 1993). However, only the tips of the scapulae overlap the proximal ends of the ribs in that specimen. The same is true for most articulated non-avian theropod skeletons (Ostrom 1978; Osborn 1916; Ostrom 1978; Dal Sasso and Signore 1998; Zhou et al. 2000; Currie and Chen 2001) (Fig. 1C), including deinonychosaurus that are preserved in three dimensions with the scapulae lateral to the ribcage (Achenbach 2003). Furthermore, the glenoids lie anteroventral to the ribcage in the *Wellnhoferia* holotype (Elżanowski 2001), as in non-avian theropods and unlike fossil ornithothoracic birds that are preserved on their sides (Feduccia 1999). Hypothesis 2 is therefore not supported by available evidence.

In addition to the four arguments listed above, there are three articulated fossil skeletons in which scapular orientation appears to contradict the conclusion reached here. However, in all three cases, the scapula is not in its original position. One such case is the holotype of the troodontid coelurosaur *Mei long* (Xu and Norell 2004). In this specimen, the scapulae lie atop the ribcage, which appears to confirm Prediction 1 of Hypothesis 2 for coelurosaurs, thereby supporting the idea that in derived non-avian coelurosaurs the scapula exhibited typical ornithothoracic orientation. However, the specimen is dorsoventrally flattened, and its ribs all lie in the same plane. The scapulae actually lie on the lateral surfaces of the ribs, which have rotated dorsally due to the flattening of the specimen. Moreover, the glenoids remain widely spaced, as in other non-avian dinosaurs and in contrast to ornithothoracic birds. The tips of the scapulae approach the proximal ends of the ribs, just as they presumably did as they lay to the sides of the ribcage before the flattening, as in non-avian dinosaur skeletons preserved on their sides (Osborn 1916; Ostrom 1978; Dal Sasso and Signore 1998; Zhou et al. 2000; Currie and Chen 2001). Therefore, the scapulocoracoids of *Mei long* were oriented as in other non-avian dinosaurs, and the appearance to the contrary is an artifact of dorsoventral flattening.

The second skeleton that appears to contradict the conclusion reached here is the “Munich specimen” of Archaeopteryx. The specimen is mostly articulated, preserved on its side, and one glenoid is higher than the ribcage (Wellnhofer 1993). However, the other glenoid is far ventral to the dorsal margin of the ribcage (Wellnhofer 1993). Also, the fact that the distal end of each scapula is lower on the ribcage than the glenoid is (Wellnhofer 1993), demonstrates that both scapulae have rotated and moved far from their natural positions. Furthermore, cranial disarticulation in the specimen suggests that decay is at too late a stage to infer that the pectoral girdle is in its original position.

The third skeleton that appears to contradict the conclusion reached here is that of the holotype of *Iberomesornis romeri* (Sanz and Bonaparte 1992). This ornithothoracic bird appears to have a scapula that exhibits the typical non-avian dinosaur orientation, as the glenoid is anteroventral to the ribcage (Sanz and Bonaparte 1992). However, the head and neck have detached, and the scapula is displaced, having been dragged along with the proximal end of the humerus, which has broken off and rotated ventrally. The scapula was originally in the typical ornithothoracic position.

Birds basal to the clade Ornithothoraces exhibit typical coelurosaurian morphology of the glenoid and humeral head (Ostrom 1976; Jenkins 1993). We can therefore safely presume that they exhibited typical coelurosaurian range of motion at the shoulder. As a result of having ventrally facing glenoids, such birds were incapable of humeral elevation higher than the level of the glenoid, and therefore incapable of flapping flight (Fig. 5). Previous hypotheses that basal birds engaged in flapping flight (Feduccia and Tordoff 1979; Olson and Feduccia 1979; Ruben 1991; Feduccia 1993; Brugers and Chiappe 1999; Rayner 2001) were based on reasonable biological arguments, but were made with the assumption that the glenoids of basal birds faced laterally. Given that the glenoids faced ventrally in these animals, the hypothesis that they engaged in flapping flight is no longer tenable. This glenoid orientation in basal birds and their theropod precursors also precludes the use of wing-assisted incline running (WAIR), which requires wing flapping with significant elevation of the humerus above the dorsum (Dial 2003). Flapping flight and WAIR both originated at or crownward of the base of the clade Ornithothoraces, in which the shoulder joint is oriented as in extant birds.

However, a ventrally facing glenoid in basal birds does not preclude the use of laterally spread wings in gliding. The hypothesis that basal birds and their theropod precursors engaged in at least some aerial locomotion, e.g., gliding or parachuting (Xu et al. 2003; Chatterjee et al. 2004), is therefore plausible.

Acknowledgements

The author would like to thank the Jurassic Foundation and the Northern Illinois University Department of Biological Sciences for providing travel funds for this project, which is Part Three of The Great Dinosaur Forelimb Project. The author would also like to thank those who provided access to and help with specimens and casts: Susan Bell, Carl Mehling, Mark Norell, Rick Edwards, Pete Makovicky (American Museum of Natural History), Francisco Ortega, Angela Buscalioni (Universidad Autónoma de Madrid), Zhou Zhonghe, Xu Xing, Zhang Fucheng (Institute of Vertebrate Paleontology and Paleoanthropology, Beijing), Angela Milner, Sandra Chapman (The Natural History Museum, London), Ji Shu’an (National Geological Museum of China, Beijing), Marion Zenker (Black Hills Institute of Geological Research), Vince Schneider (North Carolina State Museum of Natural Sciences). The reviewers also deserve thanks for helpful comments that have improved this manuscript.

References

http://app.pan.pl/acta51/app51-305.pdf

http://app.pan.pl/acta51/app51−305.pdf