New serpulid polychaetes from the Permian of western Sicily

ROSSANA SANFILIPPO, ANTONIETTA ROSSO, AGATINO REITANO, ALFIO VIOLA, and GIANNI INSACCO

Two new tubeworms, “Serpula” calannai sp. nov. and “Serpula” prisca sp. nov. are described from the Permian limestone of the Sosio Valley, western Sicily. Both species possess large tubes with long free anterior portions circular in cross-section. All morphological characters, such as tube shape and ornamentation, as well as inner structure of the wall, even if barely visible due to diagenesis, are still preserved. These two new species increase the previously known diversity of the Permian serpulid community, which flourished at the shelf edge of the western sector of the Palaeotethys and disappeared thereafter. The likely Wordian age of these serpulids, and their presumed absence in younger rocks up to the Middle–Late Triassic, suggests reduction, or even extinction, of these reef-related serpulid taxa during the end-Guadalupian biotic crisis, before the end-Permian extinction.

Key words: Polychaeta, Serpulidae, tube morphology, reef community, extinction events, Palaeozoic, Permian, Italy.

Rossana Sanfilippo [sanfiros@unict.it], Antonietta Rosso [rosso@unict.it], and Alfio Viola [a.viola@unict.it], Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia 57, 95129 Catania, Italy.
Agatino Reitano [tinohawk@yahoo.it] and Gianni Insacco [g.insacco@comune.comiso.rg.it], Museo di Storia Naturale di Comiso, Via degli Studi 9, 97013 Comiso, Italy.

Received 2 December 2017, accepted 16 May 2018, available online 8 August 2018.

Copyright © 2018 R. Sanfilippo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

True serpulids are commonly found in the fossil record and until recently they were considered widely distributed throughout the Mesozoic and Cenozoic, with about 46 genera and 350 species (ten Hove and Kupriyanova 2009; Kočí and Jäger 2015, among others). Small and simple forms dating back to the Middle Triassic, ca. 244 Ma, are the first records of unequivocal serpulids, although a number of problematic tubeworms of presumed serpulid affinity were reported from the Permian on (see Ippolitov et al. 2014). However, unexpected large-sized species with advanced characters, such as complex shape and ornamentation, were recently discovered in a limestone bed dated back to the middle-to-upper Permian, ca. 268–251 Ma (Sanfilippo et al. 2016, 2017b). These findings antedated serpulids’ first appearance even several millions years earlier and indicated that a surprisingly diversified serpulid community existed before the end-Permian mass extinction.

Two further new species unequivocally belonging to the serpulids, namely “Serpula” calannai sp. nov. and “Serpula” prisca sp. nov., were found in materials deposited in palaeontological museums in Sicily. They originate from the same Permian rocks, specifically the “Pietra di Salomone” Limestone from the Sosio Valley, western Sicily. These new specimens consist of the long unattached anterior parts of large tubes, circular in cross section.

The aims of this study are to: (i) describe these new species; (ii) determine affinities and differences between the new species and the serpulid taxa already known from the same area and time span; (iii) discuss the role played by the serpulid community of the Sosio Limestone within reef palaeoenvironments of the Permian Mediterranean Palaeotethys.

Institutional abbreviations.—PMC, Museo di Paleontologia, University of Catania, Italy; MCSNC, Museo Civico di Storia Naturale di Comiso, Ragusa, Italy.

Material and methods

The two specimens examined in the present paper originate from the “Pietra di Salomone” Limestone (Fig. 1), the larg-
Serpula calannai sp. nov.

Figs. 2, 3A–F.

Etymology: In honor of the paleontological amateur collector the late Mario Calanna (1945–2014), for his contribution to natural history collections, especially in malacology.

Holotype: MSNC 4549-33, one large tube portion (44 mm long and 7.8 mm wide), representing part of an unattached anterior erect portion, broken at both ends and partially filled by lithified sediment.

Type locality: Sosio Valley, western Sicily, Italy.

Type horizon: “Pietra di Salomone” Limestone, Wordian to upper Permian (see Material and methods).

Material.—Type material only.

Diagnosis.—Tube quite large, with a well-developed raised anterior end, circular in cross-section, with outer surface feebly rough. Ornamentations solely consisting of eristomes well developed and slightly flaring. Tube wall thick and layered.

Description.—The single available specimen is a large tube portion of the anterior end, 44 mm long and 7.8 mm wide. It is slightly bent and circular in cross-section, not increasing in diameter. Outer surface is feebly lumpy to smooth, with only irregular and inconspicuous growth lines, which are about 10 μm thick. Peristomes are well developed, differently pronounced and slightly flaring, with smooth, circular edges, locally crenulated. Peristomes are protruding up to 300 μm and irregularly spaced, at intervals of 2–6 mm. Tube wall is about 600 μm thick, with a seemingly layered internal structure, as barely visible along some sections, which cross areas that are not completely altered by recrystallization. Posterior (attached) tube portion is lacking.

Remarks.—The combination of tube characters of “Serpula calannai” sp. nov. are considered sufficient to describe it as a new species. Particularly, this species clearly differs from the other five serpulids recently mentioned from the same area (Sanfilippo et al. 2016, 2017b) by the relevant size of the tube, which is significantly larger and thicker than those of the other species.
Contrary to the specific attribution, the generic allocation is difficult, owing to the absence of preserved characters of taxonomical importance (e.g., Weedon 1994, Vinn and Mutvei 2009, Vinn et al. 2008) in the available material, because neither the morphology of the attached tube portion nor the pristine structure of the tube wall are fully known. Like some species of the genus *Vermiliopsis* Saint-Joseph, 1894, “*Serpula* calannai” sp. nov. possesses distinct peristomes, but its tube does not increase in diameter and lacks the longitudinal keels typical of that genus (Jäger 2005, 2011; ten Hove and Kuprianova 2009). In contrast, particularly large-sized tubes with circular anterior ends and evident peristomes can be present in *Serpula* (Sanfilippo and Mòllica 2000; ten Hove and Kuprianova 2009; Sanfilippo et al. 2013). Consequently, we provisionally assign the new species to “*Serpula*”, a genus name often misused to allocate species of the family Serpulidae whose characters are insufficiently known and/or do not allow an unequivocal generic attribution (see Jäger 1993). If further specimens will be found, including attached tube parts with less altered wall structure, it would be possible to support the present attribution more consistently or disregard it.

“*Serpula* calannai” sp. nov. resembles the present-day *S. cavernicola* Fassari and Mòllica, 1991, more than the other species in the genus, for its very long erect part with a relevant diameter and comparable, and even major, wall thickness, as well as for the occurrence of peristomes. However, *S. cavernicola* has longitudinal keels. This species also shows a special micromorphology of the outer surface (Sanfilippo and Mòllica 2000; ten Hove and Kuprianova 2009). In contrast, particularly large-sized tubes with circular anterior ends and evident peristomes can be present in *Serpula* (Sanfilippo and Mòllica 2000; ten Hove and Kuprianova 2009; Sanfilippo et al. 2013). Consequently, we provisionally assign the new species to “*Serpula*”, a genus name often misused to allocate species of the family Serpulidae whose characters are insufficiently known and/or do not allow an unequivocal generic attribution (see Jäger 1993). If further specimens will be found, including attached tube parts with less altered wall structure, it would be possible to support the present attribution more consistently or disregard it.

“*Serpula* prisca” sp. nov.
Figs. 2B, 4A–D.

Etymology: From Latin *priscus*, ancient; referring to both the age of the outcrop where the species was found, and to the primordial position of the species in the serpulid family.

Holotype: PMC.S5.15.09.2017, a fragment, broken at both ends, of a slightly curved free anterior tube portion. The fragment is 43 mm long and 3.9 mm wide, and appears recrystallized.

Type locality: Sosio Valley, western Sicily, Italy.

Type horizon: “Pietra di Salomone” Limestone, Wordian to upper Permian (see Material and methods).

Material: Type material only.

Diagnosis: Tube relatively large, with a well-developed raised anterior end. Tube circular in cross-section, outer surface smooth with very thin growth lines and nearly imperceptible longitudinal striations.

Description: The single specimen consists of a slightly curved tube fragment corresponding to a long anterior tube of these other species, and by the presence of evident peristomes. Obvious differences also exist with species that have erect anterior ends, but show different co-occurring characters: *Palaeotubus sosiensis* Sanfilippo, Reitano, Inasacco, and Rosso, 2016, has a tube ornamented by a number of longitudinal keels; *Serpula distefanoi* Sanfilippo, Rosso, Reitano, and Inasacco, 2017b, has a tube end with evident growth lines and a rougher outer surface; *Serpulidae gen. et. sp. indet. sensu Sanfilippo et al. 2017b*, has a very smooth tube, with regular growth lines and only weak annulations but no peristomes. “*S.* calannai” sp. nov. only roughly recalls *Propomatoceros permianus* Sanfilippo, Rosso, Reitano, and Inasacco, 2017b, of which exclusively its posterior part is known. However, it is not unlikely that, even if this latter species developed an anterior adult part circular in cross section and ornamented with peristomes (as it is in some other serpulid species), it would have retained typical transverse ribs that are lacking in “*S.* calannai” sp. nov.

Fig. 2. New serpulid polychaetes from the Wordian to upper Permian, “Pietra di Salomone” Limestone, Sicily, Italy. **A**. “*Serpula* calannai” sp. nov. (holotype MSNC 4549-33); general views (**A**1–**A**3), cross section of tube, white limestone partly filling lumen (**A**4). **B**. “*Serpula* prisca” sp. nov. (holotype PMC.S5.15.09.2017); general view of anterior end, partially embedded in rock. Arrow indicates growth directions for all tubes.
portion. It is circular in cross-section with a constant diameter of 3.9 mm. Lumen 3.3 mm wide. Tube wall 0.3 mm thick. Outer surface smooth, with very thin and smooth growth lines spaced at intervals of usually 100 to 300 μm, but locally more closely spaced and evident. Even thinner and nearly imperceptible longitudinal striations, locally intersect the growth lines. Posterior encrusting tube portion unknown. Original microstructure of the tube wall not preserved.

Remarks.—Even incomplete, the measurements of the fragment most probably indicate that it belonged to an adult specimen. The available tube portion provided distinctive characters justifying the erection of a new species. “Serpula” prisca sp. nov. has a unique, extremely smooth tube, that differs from all other serpulids from the Sosio Limestone, only superficially resembling Serpulidae sp. nov. indet. Sanfilippo et al. 2017b. Nevertheless, the latter species is smaller-sized, shows more evident growth lines than S. prisca sp. nov. and lacks longitudinal striations.

Like for the previous species, generic allocation is difficult, mostly because of the absence of the posterior attached part. The tube roughly resembles that of species belonging to Protula Risso, 1826, which may have comparable long raised anterior tube portions, not (noticeably) increasing in diameter, and lacking keels and peristomes. The delicate micromorphology with imperceptible longitudinal striations is somewhat similar to that of some scaphopod gadinidinae shells (Scarabino 1995), but differs for disposition of growth lines. Also, the smooth outer morphology of the new species is comparable to that observed in Protula but in this species the outer surface is rougher (RS, unpublished data). In absence of a more fitting genus, we provisionally assign this species to “Serpula”, pending further support from more complete tubes with attached portions. Large secondary calcite crystals occur in the tube wall, whose original structure has been obliterated by diagenesis. The tube of S. prisca sp. nov. does not show any evidence of a worst preservation in respect to that of the other species (S. calannai sp. nov.) described herein: both species come from the same outcrop, thus presumably underwent similar process of fossilization which led to similar degree of diagenetic preservation (heavy recrystallization, with large secondary calcite crystals). In spite of this, tubes of the two species possess different micromorphology. The tube of S. calannai sp. nov. displays a lumpy surface, with irregular growth lines, about 10 micron thick (Fig. 3E). In addition, several well-developed peristomes occur in the tube of S. calannai sp. nov. They are irregularly spaced and surprisingly very frequent along the tube (at intervals of 2–6 mm). Conversely, tube of S. prisca sp. nov. is perfectly smooth and lacks even slightly developed peristome. Also, both tubes represent anterior erect parts that largely differ in size: S. calannai sp. nov. is twice the size of S. prisca sp. nov. (outer diameter 7.8 mm and 3.9 mm) and has a thick wall, twice that of the other.

If these tubes belonged to the same species, the dimensional range (variability of the diameter of 4 mm) would be too large, and the hypothesis of an intraspecific variabil-
ity would be little supportive. Likewise, the difference in thickness of the tube wall (0.3 mm) is likely too much to fit into a variability. It should also be considered that usually the raised parts of the tubes maintain substantially a constant diameter and a constant wall thickness. It is likely that tubes with such obvious differences belong to different species rather than represent variants of the same species.

Stratigraphic and geographic range.—Type locality and horizon only.

Conclusions

Since their origin till nowadays serpulids represent a relevant component of coral/algal/metaspona biocomstructions in shallow-shelf habitats (among others Nishi 1996; Di Geronimo et al. 2002; Mallela 2007), as well as in bathyal (Sanfilippo 2009a; Rosso et al. 2010; Kupriyanova et al. 2011; D’Onghia et al. 2015) and cave environments (Rosso et al. 2013, Sanfilippo et al. 2013, 2015, 2017a; Guido et al. 2017). Increase in abundance and diversity of serpulids throughout geological time appears to be related to the presence of reef ecosystems, where skeletons of frame-builders constituted heterogeneous substrata available for colonization. This is the case with some Jurassic sponge build-ups (among others Pisera 1991) and Jurassic–Cretaceous coral reefs, comprising abundant and diversified serpulid associations (among others Parsch 1956; Jäger 1993, 2011), and recently acquired data (Sanfilippo et al. 2016, 2017b, present paper) suggest that this scenario may also explain high diversity of serpulids in the Permian. At that time eight serpulid species belonging to five nominal genera, Palaeotubus, Filograna, “Serpula”, Propomatoceros, and Pyrgopolon, flourished in the Palaeothysis metazoan bioherms, already exhibiting different shapes and ornamentations.

As a whole, the stout and well-calcified serpulids from the Sosio Valley, flourishing in metazoan reef-like build-ups dominated by sponges, crinoids and brachiopods, may represent an adaptive response to an exposed shallow-shelf environment. Furthermore, the frame of reef-builders probably offered differentiated microenvironments including sheltered parts, where minute and brittle forms like Filograna, or species like “S.” calannai sp. nov. and “S.” priscas sp. nov., having tubes with long anterior ends raising from the substrate, were adapted to live. Analogously to living species of Protula (see Sanfilippo 2009b: 2021–2022), in the new species the presence of an anterior part raising from the substrate for a considerable length also suggests a life habit in relatively sheltered environments of the shallow-water reef, less exposed to hydrodynamic action.

This surprisingly diversified Permian serpulid community was associated with heavily mineralized demosponges and calcisponges able to produce carbonate frameworks that reached their maximum extent and high diversity during the middle Permian, in the Guadalupian (Sremac et al. 2016). However, these habitats were strongly affected by the end-Guadalupian (pre-Lopingian) biotic crisis, presumed to be linked to global warming, ocean acidification and anoxia events. This crisis caused a steady decrease in biodiversity, especially for some groups (brachiopods, moluscs) and the demise of sponge-metaspona reefs (Clapham et al. 2009; Bond et al. 2010; Sremac et al. 2016). A concomitant decrease in diversity and a virtual disappearance paralleling the fate of other taxa could be hypothesized also for serpulids, which formed a part of the diversified reef-dwelling community. Indeed, serpulids so far have not been recorded from younger Permian and Lower Triassic rocks, up to the simple-shaped Filograna specimens, found in sheltered shallow shelf settings of the very late Middle Triassic (Flügel et al. 1984; Cirilli et al. 1999; Stiller 2000; among others).

If the Wordian or Capitanian age for the Sosio mega-blocks is confirmed (see above), it seems that the serpulid palaeocommunity might have indeed suffered a sharp reduct to almost extinction during the end-Guadalupian biotic crisis, before the end-Permian extinction. However, data on late Permian–Early Triassic serpulids are still fragmentary and further research is needed to fill this gap.

Acknowledgements

The authors thank the late Emiliano Calanna (Catania, Italy), who donated his uncle’s paleontological collections to the Museo di Storia Naturale di Comiso. The reviewers Harry ten Hove (Naturalis Biodiversity Center, The Netherlands), Manfred Jäger (Rosenfeld, Germany) and Alexei Ippolitov (Geological Institute of Russian Academy of Sciences, Moscow, Russia) greatly improved the paper with their invaluable comments and suggestions. This paper was financially supported by University of Catania grants to RS (Catania Palaeontological Research Group: contribution no. 437).

References

Gemmellaro, G.G. 1887–1889. La fauna dei calcari con

