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Supplementary methods 
Existing changes to sample size bias 

Nordén et al., (2019) showed that small sample sizes have considerable variation in length 

and diameter measurements, calculated from coefficient of variation (CV) for each variable. 

This is significant in their study because the bias resulting from the variation would be 

inconsistent and only affect the black, brown and grey categories which consist exclusively of 

data from Li et al. (2012), but not the iridescent category which Nordén et al. (2019) 

contributed most of the data for. Samples with a sample size of less than 10 were thus 

excluded by Nordén et al. (2019) to reduce bias in the datasets; for sample sizes of 10 or 

greater, CV is within 6% and considered acceptable.  

Nordén et al. (2019) also noted that variables of CV and skew are sensitive to sample 

size and could introduce bias into an analysis; at a sample size of 10, for which variability in 

length and diameter measurements has been deemed acceptable, length CV has a CV of 

23.6%. To include length CV and skew without a large variability, the minimum sample size 

would need to be much higher than 10, resulting in the exclusion of a substantial proportion of 

the dataset. Instead, only length, diameter and aspect ratio measurements were included in 

their study. 

 

Changes to Norden dataset 

Four samples originally from the Li et al. (2012) project were mislabelled with the wrong 

colour category in the online data available from Nordén et al. (2019). These have been 

corrected in this study. The altered data included Anas_platyrhynchos_a (brown in Nordén et 

al. 2019, should be iridescent), Falco_sparverius_c (grey in Nordén et al. 2019, should be 

brown), Anas_platyrhynchos_b (grey in Nordén et al. 2019, should be iridescent) and 

Anas_platyrhynchos_c (iridescent in Nordén et al. 2019, should be brown).  

 
QDA 

There are some challenges inherent in the previous applications of QDA in this field. Some of 

the assumptions of QDA (e.g. that the independent variables are continuous and multivariate 

normally distributed) may not always be met. In addition, the inclusion of some variables has 

already been criticised (Nordén et al. 2019), as well as the stepwise method in which they are 

entered in an analysis. 

 



QDA variable selection 

Li et al. (2010, 2012) applied a model comprised of eight continuous variables: length, length 

CV, length skew, diameter, diameter CV, diameter skew, aspect ratio, and aspect ratio skew. 

Their analysis allowed these eight variables to enter a model in a forward stepwise manner 

based on significance values. This method includes variables in the model in an order 

determined by level of a statistical significance (p-values). This results in those where p was 

not < 0.05 being excluded, in this case length skew and diameter skew. Hu et al. (2018) ran a 

similar analysis but in a backward stepwise manner. This starts the analysis by including all 

variables, and then removing those not significant i.e., p > 0.05 first. Like Li et al. (2012), 

those dropped because they were not significant were length skew and diameter skew.  

Caution should be exercised with any method based on p-values alone. Entering variables 

based on statistical significance may include nuisance variables that are coincidentally 

significant, while other important explanatory variables are excluded because they may not 

happen to be statistically significant (Smith 2018). Stepwise methods are hence known to be 

prone to overfitting, performing well on training data but poorly on new unknown data (Foster 

and Stine 2006; Whittingham et al. 2006). Accordingly, stepwise methods are not 

recommended. In this study, the variables were entered together into the model, rather than 

entered after stepwise selection based on significance.  

 

Avoiding stepwise selection in MLR using AIC values 

Nordén et al. (2019) avoided stepwise variable selection in MLR by adopting the approach of 

Grueber et al., (2011). This is based on variable selection depending on Akaike information 

criterion (AIC) values. In practice, this involves examining and comparing AIC values for all 

possible model combinations of predictor variables. Each AIC value estimates the out-of-

sample prediction error for that model. The lowest value identifies the model that loses the 

least information and is therefore of a higher quality in terms of fit and accuracy.  This lowest 

AIC model is the one that is then used for predictive classification. AIC includes a component 

in its calculation which discourages overfitting by penalising increasing complexity (greater 

number of predictor variables included), which makes it a better justified choice for model 

building than stepwise variable selection.  

Variable selection was based on AIC values of length, diameter and aspect ratio 

predictor variables using the gvselect function (Lindsey and Sheather 2015) in Stata-16. This 

constructed all possible models using the available variables in the dataset and ranked them 

by AIC value. The resultant predictor variables selected by lowest AIC, and subsequently 



included were diameter and aspect ratio. Hollowness and flatness were excluded from 

gvselect-based model building and were also not used by analyses M1 and M2 because every 

sample was solid and cylindrical - no variation would have been present for these two binary 

categorical predictor variables.   

For analysis M3 categorical predictor variables of hollowness and flatness were added 

to the previous AIC analysis and lowest AIC here selected diameter, aspect ratio, hollowness, 

and flatness as predictor variables for inclusion.   

 

Confirmation that LogisticDA is equivalent to MLR 

The maximum likelihood values at the convergence of the estimation algorithms for both 

MLR and LogisticDA were shown to be identical when compared using the same data and 

equivalent commands. This confirms the exact computational equivalence of the 

methods to several decimal places. LogisticDA is available for applications with two or more 

categories and was hence selected for this study, applied using the discrim logistic command 

in Stata-16 (StataCorp 2019). 

 

Model performance, LOOCV and k-fold cross validation 

LOOCV - as its name suggests - omits one data point at a time and trains the model on the 

rest of the dataset. It then tests the model on the left-out data point. This is repeated for all 

data points and the percentage of results correctly predicted is reported. Although Stata has a 

function for this, it can only be applied to linear and quadratic discriminant analysis. 

Fortunately, utilising R version 3.6.3 (R Core Team 2020) allowed computation of a LOOCV 

value for both QDA and MLR. However, a possible issue with LOOCV is that, because all 

data points are treated individually, results can exaggerate any error from outlying data points 

or sample, resulting in higher prediction variation (James et al. 2013). 

Repeated k-fold cross-validation was the second method used to complement the 

LOOCV. This randomly partitions the data into k equally sized subsets (or ‘folds’), for which 

k-1 are used as a training dataset and the remaining subset is then used to test the trained 

model. This is repeated k times so that each subset is tested once. Typically, k is 

recommended to be 5 or 10 because these values are observed to produce error rate estimates 

that are not excessively affected by high bias or variance (Kassambara 2017). This entire 

process is then repeated several times and the prediction scores averaged. This method gives 

more accurate estimates of test error rate than LOOCV because the data are in small subsets. 



This reduces potential prediction error from an outlier or biased data point, making it more 

robust than LOOCV (James et al. 2013).   

The R caret library (Kuhn 2008) was used to run repeated k-fold cross-validation 

analyses with 5 repeats. After setting a seed for reproducibility of analyses results, the data 

were split into random training and test datasets. This is to prevent the test data being ‘seen’ 

by the algorithm, to allow for a true test on unseen data. This was carried out by the 

createDataPartition function, which not only randomly selects from rows in the data but also 

stratifies the data first, dividing it within each colour category (random within colour 

category), preserving overall class distribution for the training model (Kuhn 2008).  

The output provided a value for Cohen’s Kappa, which measures the agreement of the 

predictions considering the possibility that they might be due to chance. Cohen’s Kappa 

ranges from 0 (predictions no better than expected from chance) to 1 (perfect agreement). 

Tests were run using both k = 5 and k = 10, i.e. five-fold and ten-fold cross-validation for each 

model to check for sensitivity, but the effect on the Kappa was negligible (0-0.02% 

difference). 
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Table S1: Experimenter bias test: percentage differences in measurements from additional 

individuals on images from two samples. 

 

 

 
 
 
 
 
 

Table S2: Mean melanosome measurements for Wulong DNHM D2933 used to predict 

corresponding colour classification. Samples 1 through 4 were not available to study. 

Samples 5, 8, 10 and 12 did not preserve any melanosomes. 

 
 
 
 
 
 

 Sample Length Width Aspect Ratio

6 0.1% 0.5% 0.1% 

  11.8% 11.3% 11% 

7 1.9% 9.9% 9.5% 

  2.1% 1.5% 4.4% 

Wulong 
DNHM 
D2933 
Sample 

Sample Location Mean melanosome 
measurement 

 
 
n = 

Length 
(nm) 

Width 
(nm) 

Aspect 
ratio 

6 Distal portion of metatarsus leg feather 1027.14 175.08 6.05 107 
7 Distal portion of tibia leg feather 908.92 139.23 6.73 13 

9 
Proximal portion of dorsal ilium 
feather 

1444.75 396.31 3.77 68 

11 
Proximal portion of dorsal ilium 
feather 

1524.72 450.87 3.53 156 

13 
Unidentifiable portion of a forelimb 
feather 

1475.29 436.55 3.48 115 

14 
Proximal portion of forelimb ulna 
feather (right) 

1216.78 251.73 5.15 38 

15a 
Not identifiable. Possibly Abdomen or 
forelimb humerus feather 

1493.25 452.95 3.45 122 

15b 
Not identifiable. Possibly Abdomen or 
forelimb humerus feather 

833.07 183.86 4.66 14 

15c 
Not identifiable. Possibly Abdomen or 
forelimb humerus feather 

892.10 622.15 1.31 52 

16 
Proximal portion of forelimb ulna 
feather (left) 

887.21 171.77 5.45 48 



Table S3. Average melanosome length, width and aspect ratio for different colour 

categories including iridescent sub-categories, from the complete Nordén et al. dataset 

(2019). Note the conflation of black and grey with some sub-categories of iridescence. 

 

 

 

 

 

 

 

 

 

 

Colour Category Average 

Length 

(nm) 

Average 

Diameter 

(nm) 

Average 

Aspect 

Ratio 

Number 

of 

samples 

Notes 

Black (Solid Cylindrical) 985.76 279.73 3.67 27  

Brown (Solid 

Cylindrical) 

476.40 286.13 1.70 28  

Grey (Solid Cylindrical) 1202.19 405.14 3.19 25  

Iridescent Solid 

Cylindrical 

1129.4 209.74 5.62 90 Single iridescent 

morphology 

used in all 

previous studies 

Iridescent Solid Flat  1386.34 346.32 4.11 22  

Iridescent Hollow 

Cylindrical  

1066.10 256.05 4.36 21 Similar 

dimensions to 

black 

Iridescent Hollow Flat  1404.27 579.97 2.64 20 Similar 

dimensions to 

grey, 

particularly 

aspect ratio 



Table S4. Colour classification posterior probabilities for Wulong using an unmodified 

‘Nordén’ dataset which includes hollow and flat iridescent melanosomes. 

 
Sample Location of 

sampled feather 

Predicted 

colour 

Probability 

(%) 

Q3 

QDA  

Nordén 

Predicted 

colour 

Probability 

(%) 

M3 

MLR 

Nordén 

6 

Distal portion of 

metatarsus  Iridescent 99.86 Iridescent 97.63 

7 

Distal portion of 

tibia  Iridescent 100 Iridescent 99.37 

9 

Proximal portion 

of dorsal ilium  Iridescent 75.64 Grey 54 

11 

Proximal portion 

of dorsal ilium  Iridescent 70.83 Grey 68.66 

13 

Unidentifiable 

forelimb portion Iridescent 72.30 Grey 66.07 

14 

Proximal portion 

of forelimb ulna 

(right) Iridescent 74.65 Iridescent 84.16 

15a Not identifiable. 

Possibly abdomen 

or forelimb 

humerus  

Iridescent 70.57 Grey 69.59 

15b Iridescent 83.99 Iridescent 81.26 

15c Grey 53.56 Brown 83.19 

16 

Proximal portion 

of forelimb ulna 

(left) Iridescent 99.57 Iridescent 94.29 

 

 

 

 

 

 

 



STATA CODE 

AIC – for updated variable selection method 

gvselect <term> length diameter aspectratio : mlogit colourcategory  

<term> 

QDA 

discrim qda length diameter aspectratio, group(colourcategory) 

priors(proportional) 

MLR 

discrim logistic diameter aspectratio hollow flat 

group(colourcategory) priors(proportional) 

 

 

R CODE  

Required libraries (MASS, nnet (Ripley and Venables 2002), caret (Kuhn 2008)) 

QDA - LOOCV 

> q2loocv = train(colour~.,data = q2,method = "qda", trControl = 

trainControl(method= "loocv"), trace = FALSE) 

> q2loocv 

 

QDA – repeated k-fold cross-validation 

> q2_idx = createDataPartition(q2$colour, p=0.8, list = FALSE) 

> q2_trn = q2[q2_idx, ] 

> q2_tst = q2[‐q2_idx, ] 

> q2kfold = train(colour~.,data = q2,method = "qda", trControl = 

trainControl(method= "repeatedcv", repeats = 5, number = 5), trace = 

FALSE) 

> q2kfold 

 

MLR -  LOOCV 

>m2loocv = train(colour~.,data = m2,method = "multinom", trControl = 

trainControl(method= "loocv"), trace = FALSE) 

> m2loocv 

 

MLR – repeated k-fold cross-validation 



> m2_idx = createDataPartition(m2$colour, p=0.8, list = FALSE) 

> m2_trn = m2[m2_idx, ] 

> m2_tst = m2[‐m2_idx, ] 

> m2kfold = train(colour~.,data = m2,method = "multinom", trControl 

= trainControl(method= "repeatedcv", repeats = 5, number = 5), trace 

= FALSE) 

> m2kfold 

 


