JADWIGA KARCZEWSKA

CARBONIFEROUS SPORES FROM THE CHEŁM I BORING (EASTERN POLAND)

Contents

Page

Abstract										268
Introduction										269
Working methods										270
Stratigraphy										270
Descriptions										276
Megaspores										276
Genus Calamospora										276
Calamospora laevigata			•							276
Calamospora sinuosa										277
Calamospora magna n. sp										278
Calamospora ovata n. sp										279
Calamospora sp										279
Genus Laevigatisporites										280
Laevigatisporites glabratus										280
Laevigatisporites fulgens										281
Genus Apiculatisporites										282
Apiculatisporites breviapiculatus .										282
Apiculatisporites brevispiculus										283
Apiculatisporites subspinus										284
Apiculatisporites parviapiculatus										284
Genus Lagenicula				•						285
Lagenicula crassiaculeata										285
Lagenicula subpilosa										286
Lagenicula horrida	•									288
Lagenicula horrida hippocastaniformis n	l. va	ar.								289
Lagenicula brevispinosa n. sp										291
Legenicula baculata n. sp										291
Lagenicula clavata n. sp.										293
Lagenicula maeandrica n. sp										294
Genus Lagenoisporites										295
Lagenoisporites simplex var. levis .										29 5
Lagenoisporites rugosus										297
Lagenoisporites vastus										299
Lagenoisporites cf. nudus										299
Lagenoisporites sp. 1										300
Lagenoisporites sp. 2										301
Lagenoisporites? sp. 3										301
Lagenoisporites? sp. 4										301
Genus Setosisporites										302
Setosisporites praetextus						:		:	•	302
Setosisporites hirsutus		:		:			÷		:	304
Setosisporites hirsutus var. brevispinos	a f	Ī				•			÷	305
Setosisporites hirsutus var. brevispinoso	ıf.	\overline{H}								306
				-	· ·	-	-	-	•	

															Page
Setosisporites dubovae n.	sp.														306
Setosisporites reticulatus	n.	sp											-	-	307
Setosisporites? sp 1															309
cf Setosisporites sp. 2			•						•	•	•		•	•	309
Genus Valuisisnorites	•	•		•	•	•	•	•	•	•	•	•	•	•	310
Valuisisporites auritus	•	•			•	•	•	•	•	•	•	•	•	•	210
Conus Zonalesnorites	•	•	•	•	•		•	•	•	•	•	•	•	•	310
Zonglasporitas brassarti	•	•	•	•	•	·	•	•	•	·	·	•	·	•	010
Zonalesporites brasserti	ċ.	·		•	•	•	•	•	•	•	•	•	•	•	313
Zonalespontes orassent	1. 3	souu	u		•	•	•	·	•	·	·	·	•	·	315
Zonalesporties radialus	·	-	•	•	•	•	·	•	·	·	•	·	•	•	316
Zonalesporites superous	·	•	•		•	•	•	·	·	·	•	·	·	·	317
Genus Triangulatisporites	٠.	· ·	•	•	•	•	·	•	•	•	·	•	·		318
Triangulatisporites triang	jula	itus	•	•		·	·	·	•	•	•	·	•	·	318
Genus Cystosporites	•	•	•			·	•	•	•	•	•	·	•		320
Cystosporites giganteus			•				•		•	•	•			•	320
Cystosporites varius .				•										•	323
Cystosporites verrucosus															325
Cystosporites strictus .															326
Cystosporites sp															327
Microfossils incertae sedis															327
Triletes sp. 1															327
Triletes? sp 2													_		328
Megaspore?	÷						Ż							-	328
Microspores	•	•	•		•	•	•	•	•	•	•	•	•	•	328
Genus Calamosnora	•	•	•	•	•	•	•	•	•	•	•	•	•	•	320
Calamosnora sp	•	•	•		•	•	•	•	•	•	•	·	•	•	220
Conuc Lophotrilator	·	•	•	•	•	·	•	·	•	·	•	•	•	•	229
Lonhotrilaton of primitiv		·	•	•	•	•	•	·	·	·	•	•	•	•	329
Convo Ductulation oriton	us	•	·	•	•	·	·	•	·	•	·	·	•	·	029
Genus Pusititation porties .			•	•	•	·	·	·	·	•	•	•	·	•	330
Pustulalisporites irregula	tis	n. s	p.	•	•	·	·	·	·	·	·	•	·	·	330
Genus Vestispora	•	•	·	•	•	·	•	•	•	•	•	•	٠	•	331
Vestispora ci. lucida .	·	•	•		•	•	•	·	•	-	•	-	·	•	331
Genus Triquitrites	•		•	•		•	•	•	•	•	·	•	•	٠	331
Triquitrites cf. articulos	us	•	•		•	•	•	•	•	•	•			•	332
Genus Lycospora	•		•			•	•	•		•			•		332
Lycospora intermedia n.	sp.		•			•	•	•	•						332
Genus Densosporites	•		•				•								333
Densosporites pseudoconf	rage	osus	n. s	p.											333
Genus Savitrisporites .															334
Savitrisporites minor n.	sp.														334
Genus Gravisporites															335
Gravisporites triangulatus	s n.	sp.													335
Genus Knoxisporites															335
Knoxisporites sp.															335
Genus Pseudoannulatisporite	es r), ge	n.		_					-					336
Pseudoannulatisporites n	olo	nicus	n	sp	-	-									336
Genus Sahnisporites	5.01			SP	•	•	•	•	•	•	•	·	•	·	338
Sabnienoritee of engrand		•	•		•	•	•	•	•	•	•	·	·	•	228
References		·	•	•	-	·	•	•	•	·	•	·	·	•	230
	•	•	•		•	•	•	•	•	•		•	•		220

Abstract. — A description is given of 34 species of 10 genera of megaspores, of this number 8 new species and one new variety, from Carboniferous of the Chelm I boring. A hundred and sixty eight species of microspores of 59 genera are identified. A new genus and 6 new species of microspores are described. Quantitative (specific and generic) microspore analyses have been carried out whose results are shown in Tables 2 and 3, as well as a megaspore qualitative analysis presented in Table 1. A stratigraphic correlation is made with the Upper Silesian Coalfield (Western Poland), with the U.S.S.R.'s coalfield and with Carboniferous of Spitsbergen. It is used as a basis for distinguishing in the Carboniferous series of the Chelm I boring, of the following stratigraphic units: Upper and Lower(?) Viséan, Namurian A, B and C, and Westphalian A (+B?).

INTRODUCTION

In June, 1957, I received the material for the present work, from the Lowland Department of the Geological Institute in Warsaw. It comes from the Carboniferous deposits of the Chełm I boring, situated on the Uherka River, 1 km from Chełm. In this boring, Carboniferous formations occur at depth, ranging from 1,207.70 to 580.20 m. The lithological profile of these formations has been worked out by Korejwo (1960a). I used it for taking samples, necessary for microfloristic studies.

The aim of the present work is to establish, on the basis of microflora, an accurate age of particular Carboniferous layers of the Chełm I boring section and to study the spores found in it. The laboratory work has been carried out at the Laboratory of Palaeobotany of Warsaw University. I took about 500 samples (approximately, at 1 m intervals), of which 200 were macerated for mega- and 200 for microspores.

As a result of the mega- and microspore analyses, I succeeded in drawing boundaries between Namurian and Westphalian, Viséan and Namurian, as well as in distinguishing Lower(?) and Upper Viséan, Namurian A, B and C and Westphalian A (+B?).

A very rich megaspore material and a lack of more extensive and up-to-date studies on megaspores, which occur in Poland, have induced me to a detailed study of this material. I described 34 species, of this number 8 new ones, as well as one new variety. On account of the existence of a relatively recent work by Dybová and Jachowicz (1957a) who deal with microspores of the Upper Silesian productive Carboniferous (Namurian A — Westphalian D), I confined myself to the assignment of the microspores found (168 species). In this material, 1 genus and 6 species turned out to be new ones. For stratigraphic purposes a quantitative spore analysis was carried out.

The collection of the spores described is kept at the Laboratory of Palaeobotany of Warsaw University, designated with the symbols Z.Pb.A to O.

The present work has been carried out under the guidance of Prof. M. Kostyniuk ,Director of the Laboratory of Palaeobotany of Warsaw University, to whom I would like to express my warmest thanks for numerous indications and advice. Likewise, I thank Prof. W. Pożaryski, Director of the Laboratory of Micropalaeontology of Warsaw University, and Prof. S. Z. Stopa, from the Mining and Metallurgy School in Cracow, for their valuable remarks. My gratitude is also due to the employees of the Upper Silesian Field Station of the Geological Institute at Sosnowiec, Doc. Dr. S. Dybová-Jachowicz, Doc. Dr. A. Jachowicz and Miss Z. Żołdani, for numerous discussions and putting within my reach comparative materials from the borings they worked out. I am also indebted to Miss L. Łuszczewska for taking microphotographs.

WORKING METHODS

In order to obtain the spores, I macerated about 400 samples, mostly applying Schulze's method, modified by T. Bocheński, as well as S. Dybová and A. Jachowicz. This method is based on the oxidizing action of the fuming nitric acid (with a specific gravity amounting to 1.5) applied to coals and coal shales. To obtain megaspores, I macerated a rock, crushed into grains about 2.5 mm in thickness and, to obtain microspores, into grains, lesser than 2.5 mm in thickness. The maceration time did not exceed 8 hours. Afterwards, samples were washed in water and cleaned by means of a 5-per cent sodium hydroxide. Shales and sandstones were macerated in a 40-per cent hydrofluoric acid.

In the case of microspores, satisfactory results were obtained in 33 and — of megaspores — in 18 samples. The richest in spores turned out to be coals and coal shales whose samples were the most suitable for the quantitative spore analysis. Other types of rocks as clayey shales and sandstones are marked by the lack or a very low content of spores.

During the observation of thin-membraneous megaspores, it turned out that positive results were obtained by cleaning particular specimens by means of the sodium hydroxide which dissolved substances filling the spores. After washing these spores and putting them in glycerine, they may be observed in a transmitted light which makes the ornamentation very well visible. This cleaning operation should be performed very carefully, cautiously and relatively quickly lest the spore exines become destroyed. Such spores should be kept in glycerine which prevents them from drying up. Since they are fine, when dried up, they contract and become destroyed.

STRATIGRAPHY

The microfloristic material from the Carboniferous part of the Chełm I boring is very abundantly represented by both mega- and microspores. After the qualitative mega- (Table 1) and microspore, as well as the quantitative microspore (Tables 2 and 3) analyses, it turned out that this material is suitable for making a stratigraphic correlation with other coalfields. Microflora of the upper part of the column (from a depth of 1,073.70 m) displays a considerable similarity to the Upper Silesian Carboniferous. The assemblage of spores occurring below 1,073.70 m may be only compared with analogous assemblages of spores from the U.S.S.R.'s (Ishchenko, 1952, 1956, 1958 and 1962) and Spitsbergen's (Playford, 1962, 1963a) coalfields.

Spore assemblages from Carboniferous of the Chełm I boring

1) The assemblage of microspores, occurring in the series of deposits,

situated at depths ranging between 1,205.60 and 1,099.25 m, very rich and differentiated, is represented by 39 genera and 90 species. Of this number, 10 genera and 54 species do not pass to overlying layers. There occur many (about 50 per cent) species common with the Donetz Coalfield and the eastern part of the Bug Coalfield (Ishchenko, 1952, 1956 and 1958) such as, Murospora astricta, M. dupla, Potoniespores latus, Cincturasporites mediasulcatus, C. sulcatus, Reticulatisporites cancellatus, Densosporites substrictus, D. duriusculus, Convolutispora clavata, Knoxisporites hederatus and Stenozonotriletes castus. These species occur in the Soviet Union's Carboniferous only in Viséan, whereas at Chełm they are limited to the formations at the depth under study. The remaining species, common for Chełm and Soviet coalfields, make up the Viséan-Namurian assemblage (about 14 species) which, among other ones, include Knoxisporites literatus, Cingulizonates bialatus, Tripartites articulosus nad others.

The assemblage of microspores from the beds discussed is also similar to that of the Lower Carboniferous from Spitsbergen. There are about 50 common species with a similar stratigraphic range. Playford (1963a) settles certain index species for Tournaisian, Viséan and common ones for both these stages. He also assumes that the formations, he studied, also include Namurian A. Of index species, settled by Playford, 22 are common for Spitsbergen and Carboniferous of the Chełm I boring. Three of them, Punctatisporites labiatus, Lophozonotriletes rarituberculatus and Knoxisporites hederatus occur in Spitsbergen only in Tournaisian. Others as Cyclogranisporites flexuosus, Reticulatisporites cancellatus, Radialetes costatus, Convolutispora tuberculata, Tripartites incisotrilobus, Endosporites micromanifestus and Knoxisporites literatus occur all over the Spitsbergen section from Tournaisian to Namurian A(?). The most numerous group of common species (12) is formed by index microspores for Viséan and Namurian A of Spitsbergen, i.e. Reticulatisporites variolatus, R. peltatus, Foveosporites insculptus, Densosporites aculeatus, D. rarituberculatus, Lophozonotriletes appendices, Diatomozonotriletes saetosus, D. hughessi, Tripartites complanatus, Murospora aurita, Cingulizonates bialatus and Lycospora uber.

On the basis of the comparison of the Carboniferous microspore assemblage from the Chełm I section from depths, ranging between 1,205.60 and 1,099.25 m, with microspores from the Donetz Coalfield and from Spitsbergen, it was possible to determine the age of the formations from Chełm as Viséan. This is testified to by a considerable microfloristic differentiation and the occurrence of a large number of species, known from Viséan of the U.S.S.R. and Spitsbergen.

The assemblage of spores, occurring in the borings at depths, ranging between 1,205.60 and 1,195.10 m, differs from the material, coming from

Age Sample No. 38
Sample No.
Dapth (in metres) 611.90— 612.50
+ Calamospora sinuosa
+ C. laevigata
C. magna
+ C. ovata
+ Laevigatisporites glabratus
L. fulgens
+ Apiculatisporites brevispiculus
+ A brevianiculatus
+ A subsninus
A narvianiculatus
+ Lagenicula horrida
+ L horrida var hinnogstaniformis
+ L submilesa
L. suopriosa
L. baculata
+ L. clavata
+ L. brevispinosa
L. maeandrica
Lagenoisporites simplex var. levis
+ L. rugosus
L. vastus
L. cf. nudus
Lagenoisporites sp. 1
Lagenoisporites sp. 2
Lagenoisporites? sp. 4
+ Lagenoisporites? sp. 3
+ Setosisporites praetextus
+ S. hirsutus
S. hirsutus var. brevispinosa f. I
S. hirsutus var. brevispinosa f. II
S. reticulatus
S. dybovae
cf. Setosisporites sp. 2
Setosisporites? sp. 1
+ Valvisisporites auritus
L Zonalesnoritas hrassarti

ACTA PALAEONTOLOGICA POLONICA, VOL. XII

Table 1

depths, varying within limits of 1,195.10 and 1,099.25m, in the predominance of the *Pseudoannulatisporites polonicus* n.sp., spores which do not occur in overlaying layers, and in the presence of spores which, in the U.S.S.R. and Spitsbergen, were found only in Tournaisian and Lower Viséan. The lastnamed species occur at Chełm only occasionally and probably constitute the relics of Tournaisian. Twenty seven species do not pass to beds situated higher than at a depth of 1,195.10. Instead, there occur 9 other species (Table 3). These differences might show that the complex of deposits, situated at this depth could be assigned to Lower Viséan, whereas the complex of deposits, situated at a depth of 1.195.10 to 1,099.25 m, to Upper Viséan.

2) The complex of deposits, coming from depths between 1,073.70 and 1,002.50 m, is marked by a very rich assemblage of microspores, which is similar in character to those, occurring in Carboniferous of the U.S.S.R., Spitsbergen and Upper Silesia. With regard to the specific composition, the assemblage of microspore from this depth displays a similarity to that, formed in the three areas, referred to above. At this depth, there occur many species known from Namurian A of Upper Silesia (Schulzospora primigenia, Cingulizonates tuberosus, Lycospora parva, Tripartites cristatus, etc.), as well as a certain number of species, known from Carboniferous of the U.S.S.R. (such as, abundantly represented, Granisporites paululus and Densosporites diatretus, and, in a small number but constantly occurring, Rotaspora fracta) and of Spitsbergen such as, abundantly represented, Lycospora uber which is an index species for Viséan and Namurian A. The assemblage of microspores from the complex of deposits under study displays a considerable similarity to that, found in Namurian A of Upper Silesia (Dybová & Jachowicz 1957 a, b; Jachowicz, 1958). The occurrence of about 50 per cent of microspores of the genus Lycospora, about 30 per cent of spores of the genus Densosporites and still less of the representatives of the genera Tripartites, Schulzospora and Sporonites are their common features. On the basis of these facts, I consider the complex of deposits, occurring at depths between 1,073.70 and 1,002.50 m to be Namurian A.

3) Deposits, situated at depths from 950.70 to 852.00 m, are marked by a relatively slightly differentiated, poor assemblage of microspores (17 genera and 26 species), similar to an assemblage of spores, which occurs within the range of "anticlinal beds" (Namurian B) of the Upper Silesian productive Carboniferous (Dybová & Jachowicz, 1957b; Jachowicz, 1958). A quantitative supremacy of microspores of the genus *Densosporites* (+ *Anulatisporites*) and a smaller number of spores of the genera *Lycospora* and *Tripartites* are common characters of these two assemblages. In contrast to Upper Silesia, in this place, there still do not occur the spores, assigned to the species *Cirratriradites saturni* and *Dictyotri*-

575 580 581		571b	527	472	432	426 N	413 425 A	399 M	351	266 R	239	230 A	190 207 N	197	192	165	148	118 WE	56 ST	55 25 PHA	5 %	an	30	57	Sample No.
? Lower	r 	UI	oper	1,0	1,0	A 1,0	1,0	1,0	9 9	B				2 7	7	7	72	A	62	61	- 5 0	A(?	B)	58	900 000
98.00 - 98.70 - <u>)3.60</u>	90.10 -	93.00 -	34.95 -	10 95	38.50 -	27.20	26.80 -	02.50 -	47.00 -	55.50	24.50 -	15.80 —	- 01.30 90.10	80.60	76.00	13.50	27.50 -	96.30	29.80	7.00	2.50 -	11.90	78.50 —	10.20	(in me
-1,198 -1,203 -1,205	- 1,193	- 1,193	- 1,135	- 1,073	- 1,040	- 1,027	- 1,013 - 1,026	- 1,002	- 950	857	- 829	- 817	- 791	- 781	- 778	- 745	- 728.	- 697.	- 630.	- 620.	- 614.	- 612.	- 611.	- 584.	pth etres)
.60 • • •	.20 X	3.55 ₩	10	- ×	3 6 +	.25 1	.95 +-	en .60	.70	50	50	40	.50	50		.68	3 8	3.38	.10	10	يع د 			20	Lycospora uber (Hoffmeister, Staplin & Malloy) Staplin, 1960
0 -	-		_	+	+-			+			+			-		+	+				+	+-			Radialetes costatus Playford, 1963 Cyclogranisporites flexuosus Playford, 1962 Densosporites minutus (Ishchenko) nov. comb.
00	+	-									-		_			+						-			Pseudoannulatisporites polonicus n. sp. Punctatisporites glaber (Naumova) Playford, 1962 Cuelogramisporites Jasius (Waltz) Playford, 1962
	0	0	0		0												+				-				Knoxisporites hederatus (Ishchenko) Playford, 1963 Leiotriletes ornatus Ishchenko, 1956
0 0 0 -	+	• •	- 0	> c > +	- 0	0	0		+	×	- 0	-	0			- 7	5	ľ			C	0	-	0	Densosporites rarispinosus Playford, 1963 Densosporites annulatus (Loose) S., W. & B., 1944 Murospora strigata (Waltz) Playford, 1962
0													-			+						-			Calamospora microrugosa (Ibrahim) S., W. & B., 1944 Punctatisporites labiatus Playford, 1962 Acenthetriletes maturus (schebenko, 1952)
0												-										-			Acanthotriletes novicus Ishchenko, 1952 Convolutispora usitata Playford, 1962
0				+										-				-							Hymenozonotriletes substrictus Ishchenko, 1956 Lophozonotriletes appendices (Hacquebard & Barss) Playford, 1963 Lophozonotriletes rarituberculatus (Luber) Kedo, 1957
0																									Convolutispora labiata Playford, 1962 Murospora astricta (Ishchenko) nov. comb. Potonicspores (a) Hymenozonotriletes) latus (Ishchenko) nov. comb
0		-				+																			Knoxisporites solutus (Ishchenko) nov. comb. Cincturasporites sulcatus (Waltz) Hacquebard & Barss, 1957
0		,			+			+			+			+		+	-	+							Leiotriletes subinortus (Waltz) Ishchenko, 1952 var. rotundatus Waltz, 1941 Acanthotriletes circumactus Ishchenko, 1952 Reticulatisporites variolatus Playford, 1962
0		>						-								+									Foveosporites insculptus Playford, 1962 Densosporites aculeatus Playford, 1963, Raticulationarites cancellatus (Walte) Playford, 1962
0		> >		+																					Murospora dupla (Ishchenko) Playford, 1962 Diatomozonotriletes saetosus (Hacquebard & Barss) Hughes & Playford, 1961
0 0		> 		0												+		-				+			Diatomozonotriletes hughessii Playford, 1963 Endosporites micromanifestus Hacquebard, 1957 Knoxisporites cinctus (Waltz) Butterworth & Williams, 1958
0				0																		-			Microreticulatisporites lunatus Knox, 1950 Murospora aurita (Waltz) Playford, 1962 Computingere tuberculate (Waltz) Hoffmeister, Staplin & Malloy, 1955
0			0	0																					Anapiculatisporites concinnus Playford, 1962 Anapiculatisporites serratus Playford, 1962
	> > >	0		-					H					-					H			- -			Tripartites incisotrilobus (Naumova) Potonié & Kremp, 1956 Tripartites complanătus Staplin, 1960 Granulatisporites commodus (Ishchenko) nov. comb.
0			0		0			0	Ħ		+			-			-				+-				Leiotriletes inermis (Waltz) Ishchenko, 1952 Reticulatisporites peltatus Playford, 1962 Knorisporites literatus (Waltz) Playford, 1963
0 0		, 0 , 0 , 0		2	-		0	0 0 0	0		+						+						-		Stenozonotriletes facilis var. praecrassus Ishchenko, 1956 Murospora intorta (Waltz) Playford, 1962
• •		>		0 0	>	0		0 0	0	0							-	-				-			Chaetosphaerites pollenisimilis (Horst) Butterworth & Williams, 1958 Leiotriletes microgranulatus Playford, 1962
	0		0		0	0																			Acanthotriletes pennatus Ishchenko, 1952 Densosporites salebrosus (Ishchenko) nov. comb.
	-	• • • X	★ 4 + 3	⊳ ★ + ⊳ c	- •	×	× •	• X	×	×	* -		•	• *	+	×Ì		•	•	•	+	- +-	•	•	<u>Cingulizonates bialatus (Waltz) nov. comb.</u> <u>Lycospora punctata Kosanke, 1950</u> <u>Schulzospora primigenia Dybová & Jachowicz, 1957</u>
		0		_							_					_						-			Acanthotriletes obesus Ishchenko, 1952 Reticulatisporites planus Hughes & Playford, 1961 Granisporites contartus (Ishchenko) nov. comb
		-	0															-							Granisporites punctulatus (Ishchenko) nov. comb. Convolutispora clavata (Ishchenko) Hughes & Playford, 1961
		0 0 0	0		0	0		+								+	+	+			+	-			Schulzospora primigenia f. elongata Dybova & Jachowicz, 1957 Punctatisporites platirugosus (Waltz) Sullivan, 1964 Densosporites duriusculus (Ishchenko) nov. comb.
		-	0	- -		0		-+									-				+	╞			Granisporites paululus (Ishchenko) nov. comb. Acanthotriletes cystostegius Ishchenko, 1956 Granulatienerites microgranifer Urahim, 1933
			0	0	>																				Pustulatisportes irregularis n. sp. Ibrahimispores brevispinosus Neves, 1961
			+ 0			0	- (0 0 0 -	- 0			- +	+	+ +				0			c	0		0	Densosporites diatretus Playford, 1963 Tripartites rugosus (Horst) Dybová & Jachowicz, 1957 Cingulizonates tuberosus Dybová & Jachowicz, 1957
				0				+			-					_									Verrucosisporites horridus (Ishchenko) nov. comb. Granulatisporites minutus (Ishchenko) nov. comb. Stenozonatriletes castus Ishchenko, 1958
				0				-																-	Dictyotriletes mediareticulatus (Ibrahim) Potonié & Kremp, 1955 Diatomozonotriletes ubertus Ishchenko, 1956
						0		_			+			+		+	╞			+		-			Brachytrilistrium spinosum Ishchenko, 1952 Punctatisporites platirugosus var. minutus (Waltz) nov. comb. Savitrisporites nux (Butterworth & Williams) Sullivan, 1964
					, 0	0		0	0			-													Triquitrites cf. articulosus (Ishchenko) Sullivan & Neves, 1964 Rotaspora fracta Schemel, 1950
				0 0 0	,	0		0 0	0	0										-+-					Apiculatisporites parojointis facese, foor Apiculatisporites macrurus (Luber) Potonié & Kremp, 1955 Densosporites bacatus (Dybová & Jachowicz) Agrali, 1964
						- 0 0			★ ○	+ ; 0 (0		-	-					+			0		Densosporites coronarius (Dybová & Jachowicz) nov. comb. Densosporites glandulosus Kosanke, 1950 Densosporites granulosus Kosanke 1950
						0			0		0		-			*)	(+	- +		* (> -	• •	0	0 0	Lycospora parva Kosanke, 1950 Reinschospora triangularis Kosanke, 1950 Canaliculatisporites spongiatus Dyboyá & Jachowicz, 1957
						0	0 0			0	c	0	0			00		0		(0	0	0	0	Densosporites spinosus Dybová & Jachowicz, 1957 Granulatisporites granulatus Ibrahim, 1933
		_		.;	2 2 0	0			0				0 -	-		00			0		0	0	0	0	Sporonites unionus (Horst) Dybová & Jachowicz, 1957 Calamospora liquida Kosanke, 1950 Tripartites cristatus Dybová & Jachowicz, 1957
	-			+		0		0								+									Diatomozonotriletes rarus Playford, 1963 Granisporites ferus (Ishchenko) nov. comb. Aniculatisporites aniculatus f. minor Dyboyá & Jachowicz, 1957
							(0					-		+									Triquitrites clavatus (Ishchenko) Sullivan & Neves, 1964 Acanthotriletes microspinosus (Ibrahim) Potonie & Kremp, 1954
								0 0 0 0 0	0	0 0		<u>-</u>	0 	++	×	+ +		-	0		0	- 0	-	0	Laevigatisporites laevigatus Dybova & Jachowicz, 1957 Lycospora granulata Kosanke, 1950 Lycospora intermedia n. sp.
				+					0		c	0				0	_				0	0	0	0	Leiotriletes sphaerotriangulus (Loose) Potonié & Kremp, 1954 Triquitrites pandus (Ishchenko) Sullivan & Neves, 1964 Lophotriletes primitivus Ishchenko, 1956
				+	-			0	0		0		0			-	>			-		-	T		Microsporites radiatus (Ibrahim) Dijkstra, 1946 Cingulizonates radiatus Dybová & Jachowicz, 1957
									0		c	0	0						+		-				Brachytritistrium minutus Ishchenko, 1956 Dictyotriletes castanaeformis (Horst) Sullivan, 1964 Canaliculatisporites bastionatus Dybová & Jachowicz, 1957
																							H		Reinschospora magnifica Kosanke, 1950 Raistrickia pallida Dybová & Jachowicz, 1957 Anapiculatisporites spinosus (Kosanko) Potoniá & Krome, 1955
				-				-			0	×	0	-	+	(>							Cristatisporites solaris (Balme) Butterworth & Smith, 1964 Apiculatisporites apiculatus f. maior Dybová & Jachowicz, 1957
													0			-	-				-	• 0 0	0	-	Granisporites minor Dybová & Jachowicz, 1957 Granisporites medius Dybová & Jachowicz, 1957
					-			-	-		0	<u>></u>	0			0 0			0	+	0	0 0	0 0 0	0 0 0	Florinites antiquus Schopf, 1944 Dictyotriletes bireticulatus (Ibrahim) Potonié & Kremp, 1955 Apiculatisporites aniculatus f. media Dyboyá & Jachawicz, 1957
											0					-	Í	Í			0	0	Ó	0	Laevigatosporites vulgaris Ibrahim f. maior Loose, 1934 Ahrensisporites angulatus (Kosanke) Dybová & Jachowicz, 1957
								+					0	-							0	0			Raistrickia superoa (toranim) S., W. & B., 1944 Tuberculatisporites regularis Dybová & Jachowicz, 1957 Raistrickia aculeata Kosanke, 1950
				+	+						$\left \right $	H	0 0			0 0		0			000	0	0		Radiizonates rotatus (Kosanke) Staplin & Jansonius, 1964 Raistrickia irregularis Kosanke, 1950 Densosporites pseudoconfragosus n. sn
											-					- 0) -	+			•	-	-	-	Cyclogranisporites orbiculus Potonić & Kremp, 1955 Knoxisporites sp.
														+			2 2 2					-			Savarisporaes manor n. sp. Triquitrites pulvinatus Kosanke, 1950 Lophotriletes insignitus (Ibrahim) Potonié & Kremp. 1955
	+										+					0					-				Lophotriletes pseudoaculeatus Potonié & Kremp, 1955 Florinites volans (Loose) Potonié & Kremp, 1956 Converruçosisporites armatus (Dubová & Lochamica) and
	-							+										0			0	0			Tuberculatisporites annuaus (Dybova & Jacnowicz) nov. comb. Tuberculatisporites micronodatus Dybová & Jachowicz, 1957 Pustulatisporites pustulatus Potoniė & Kremp, 1954
					-									+			0				0				Densospornes lemniscus Dybová & Jachowicz, 1957 Microreticulatisporites sifati (Ibrahim) Potonié & Kremp, 1955 Latosporites latus (Kosanke) Potonié & Kremp, 1954
						-		-						-		+					0	C	F		Cirratriradites punctatus Dybová & Jachowicz, 1957 Calamospera pedata Kosanke, 1950 Vestispora cancellatus (Dybová & Jachowicz) Dybová & Jachowicz)
							1							Ļ							0	0	0		Calamospòra cancenaras (Dybova & Jacnowicz) Dybová & Jachowicz, 1966 Calamospòra breviradiata Kosanke, 1950 Converrucosisporites verrucosus (Dybová & Jachowicz) nov. comb.
				ŧ												f	+				0	0	0	0 0	Calamospora mutabilis (Loose) S., W. & B., 1944 Wilsonia punctata Dybová & Jachowicz, 1957 Florinites pumicosus (Ibrahim) S., W. & B., 1944
	F			F	-										Ħ			+-	-+	+	0	0	0	0	Laevigatisporites minimalis f. obesa Dybová & Jachowicz, 1957 Laevigatisporites giganteus Dybová & Jachowicz, 1957 Laevigatosporites gualis Kospola 1950
					+-									+								000			Densosporites reticulatus Dybová & Jachowicz, 1957 Verrucosisporites adenotatus Dybová & Jachowicz, 1957
				+	+				╞		╞					+	+				+	0	0		Eellispores bellus Arlüz, 1957 Punctatisporites punctatus Ibrahim, 1932 Microreticulatisporites fistulosus (Ibrahim) Knox 1950
				f				-			+				H	+	+			-		0		0	Cristatisporites indignabundus (Loose) Potonié & Kremp emend. Staplin & Jansonius, 1964 Lycospora brevis Bhardwai 1957
											-					+				+	+-	0			Gravisporites triangularis n. sp. Sahnisporites cf. saarensis Bhardwaj, 1954
								+								╀	+	+	+	+		0			vesuspora ci. tuciaa (Butterworth & Williams) Potonié & Kremp, 1960 Lophotriletes cf. primitivus Ishchenko, 1956 Čalamospora sp.

O -- 5[₩]/₀

 $5 - 10^{0/0}$

┿ 10---20°/°

★ 20 - 50° e

• 50-- 100°/0

letes bireticulatus. Such species as Lycospora uber or Densosporites rarispinosus, characteristic of Namurian A, do not pass to these beds.

On the basis of these findings, I consider the complex of deposits, laying at depths from 950.70 to 852.000 m to be Namurian B.

4) The complex of deposits, situated at depths from 829.30 to 743.50 m contains an assemblage of microflora, typical of the lower part of the Ruda Beds (Namurian C) in Upper Silesia (Dybová & Jachowicz, 1957b); Jachowicz, 1958). A repeated considerable differentiation of the microspore assemblage, a final disappearance of the Namurian species and an appearance of the Westphalian genera (*Florinites* and *Cirratriradites*) and species are the characteristic features of this complex in which the part of spores of the genus *Densosporites* is decreased, and that of *Lycospora* — increased. In contradistinction to Upper Silesia, the lack is here recorded of spores of the genus *Tripartites* which do not pass to this series of deposits. This is the reason why I assign the complex of deposits laying at depths between 829.30 and 743.50 m to Namurian C.

5) The complex of deposits at depths, ranging from 732.60 to 580.20 m, contains an assemblage of microspores typical of the upper part of the Ruda Beds (Westphalian A) of Upper Silesia. A predominant role of the genus Lycospora, a smaller number of the representatives of the genus Densosporites, a more abundant occurrence of spores of the genus Florinites and an appearance of a dozen or so new species, known only from Westphalian such as Cyclogranisporites orbiculus, Cristatisporites indignabundus, Latosporites latus, etc., make up characteristic features of this assemblage.

In the upper part of this zone (above 614.30 m), species begin to appear occasionally which are characteristic of later stages (Westphalian B). These are, for instance, Wilsonia punctata, Vestispora cancellatus, Densosporites reticulatus, Calamospora breviradiata and Lycospora brevis. A complete lack is here recorded of Namurian species. On the other hand, a repeated (after Viséan) optimum is marked of the occurrence of spores (53 species, 32 genera). On the basis of these facts, I assign the complex of deposits, laying at depths from 732.60 to 580.20 m, to Westphalian A with the reservation that deposits, laying from 614.30 to 580.20 m, probably make up the lowermost zone of Westphalian B.

The results, obtained on the basis of the microspore analysis are confirmed by the megaspore analysis. Megaspores of *Setosisporites hirsutus*, occurring at a depth of 855.50 m, constitute an additional index of age of these deposits (Namurian C). The species *Cystosporites varius*, for a long time considered to be typically Westphalian (Brzozowska & Żołdani 1958) and found by Dybová (1958) on the Ostrava-Karvina area (Czechoslovakia) in Namurian C, at Chełm occurs at a depth of 829.30 m. On the basis of the microspore analysis, the age of this deposits has also been

VIESTAR N MESTMALIAN MESTMALIAN 1 <th>575 580 581</th> <th>573</th> <th>5711</th> <th>497</th> <th>472</th> <th>420 432</th> <th>425</th> <th>413</th> <th>399</th> <th>266 351</th> <th>263</th> <th>239</th> <th>207</th> <th>198</th> <th>197</th> <th>165 192</th> <th>154</th> <th>148</th> <th>118</th> <th>46 26</th> <th>40</th> <th>39</th> <th>38</th> <th>30 5</th> <th>Sample No.</th>	575 580 581	573	5711	497	472	420 432	425	413	399	266 351	263	239	207	198	197	165 192	154	148	118	46 26	40	39	38	30 5	Sample No.
Cover Upper A B C A A(D) P 1 <t< td=""><td>V</td><td>ISÉ</td><td>AN</td><td></td><td>_</td><td>I</td><td>N.</td><td>A I</td><td>M</td><td>U</td><td>R</td><td>I</td><td>Α</td><td>N</td><td></td><td></td><td>Τ</td><td>W</td><td>VES</td><td>TP</td><td>IA</td><td>LIA</td><td>N</td><td></td><td>></td></t<>	V	ISÉ	AN		_	I	N.	A I	M	U	R	I	Α	N			Τ	W	VES	TP	IA	LIA	N		>
State State State State State Sta	? Lower		Upp	er		P	1	L.		В				С				A		_		A	(?E	3)	00 0
Bill State Stat	1,198.00 - 1, 1,198.70 - 1, 1,203.60 - 1,	1,195.10 - 1,	1,134.93 - 1, 1,193.00 - 1,	1,099.25 - 1,1	1,073.50 - 1,	1,027.20 - 1, 1,038.50 - 1,	1,026.80 - 1,	1,014.80 - 1,	1.002.50 - 1	855.50 947.00	852.00	824.50 —	790.10 815.80	781.50	780.60	743.50 - 776.00 - 776.00	732.60	727.50 —	696.30	617.00 -	613.55 —	612.50 —	611.90	580.20 — 598.50 —	(in met
Lipenalpon (L., W. a. L.) Provine & Kirmy, Diski Ladorilletes (Naumova) Poolis & Kirmy, 1954 Ladorilletes (Naumova) Poolis & Kirmy, 1954 Productaporite (Drahim) Poolis & Kirmy, 1954 Reductaporites (Drahim) Poolis & Kirmy, 1954 Reductaporites (Drahim) Poolis & Kirmy, 1954 Reductaporites (Drahim) Poolis & Kirmy, 1954 Reductation (Chaines) Poolis & Kirmy, 1954 Reductati	198.20 203.60 205.60	195.20	193.50	099.35	073.70	040.40	026.95	015.80	002.60	857.50 950.70	855.50	829.30	791.30 817.40	782.50	781.50	745.607778.00	738.70	728.20	697.30	620.10 630.10	614.30	613.55	612.50	584.20 611.90	res s)
Lipioriliete (Naumova) Plotonie & Kremp, 1964 Cyclograminy Potonie & Kremp, 1964 Purctetisporiter (Dotonie & Kremp, 1964 Predominality of the second state (Potonie & Kremp, 1964) Predominality of the second state (Potonie & Kremp, 1964) Calibrian State		F																							Lycospora (S., W. & B.) Potonie & Kremp, 1934 Densosporites (+ Anulatisporites) (Berry) Butterworth, Jansonius, Smith & Staplin, 1964
Cyclogramsporter Structure & Kremp, 1994 Punctation Potonik & Kremp, 1994 Punctation Structure (Unitation Potonik & Kremp, 1994 Perudomation & M. et al., 1940 Calumation of M. et al., 1941 Microsofter (Internation of Microsofter (Internation of Kremp, 1954 Microsofter (Internation of Kremp, 1956 Concolution of Kremp, 1956 Microsofter (Internation of Kremp, 1958 Microsofter (Internation of Kremp, 1958 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>_</td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td>Leiotriletes (Naumova) Potonié & Kremp, 1954</td>	-						1		_												L				Leiotriletes (Naumova) Potonié & Kremp, 1954
Korstporter (Polonik & Kremp) Neves, 1961 Periodizanticitaportes (Donolik & Kremp, 1954 Calamoports, W. & B., 1944 Granulatisportes (Donolik & Kremp, 1954 Microreticulatisportes (Donolik & Kremp, 1954 Datomozontrites (Naumova) Potonik & Kremp, 1956 Consolutispont Hoffmeister, Staplin A. Malloy, 1950 Hymenozontrites (Naumova) Potonik & Kremp, 1954 Biologonolik (Microretica (Naumova) Potonik & Kremp, 1954 Datomozontrites (Naumova) Potonik & Kremp, 1958 Charatophores Artik, 1957 Potomicropera Artik, 1951 Datomozontrites (Naumova) Potonik & Kremp, 1958 Charatophores Artik, 1957 Datomozontrites (Naumova) Potonik & Kremp, 1958 Charatophores Artik, 1957 Datomozontrites (Naumova) Potonik & Kremp, 1954 Datomozo		┼─	┢┼╴				┥╴	++	+	-+-	\vdash	$\left \right $						\square	-			P	+		Cyclogranisporites Potonie & Kremp, 1954 Punctatisporites (Ibrahim) Potonié & Kremp, 1954
Peredoarmalatisporites n. gen. Radialetes Staplin, 1960 Calamospors S., W. B., 1944 Granizitzporites (Ubrahim) Potonié & Kremp, 1954 Microretivalitziporites (Skonz) Potonié & Kremp, 1954 Microretivalitziporites (Skonz) Potonié & Kremp, 1954 Microprosonces, 1952 Acanthortieset (Namova) Potonié & Kremp, 1954 Stenzeonoriteites (Namova) Potonié & Kremp, 1954 Microprosontieles (Namova) Potonié & Kremp, 1956 Consolutioprosontieles (Namova) Potonié & Kremp, 1956 Consolutioprosontieles (Namova) Potonié & Kremp, 1954 Higher Resonantiese (Namova) Potonié & Kremp, 1954 Bistoneconstrietes (Namova) Potonié & Kremp, 1958 Bistoneconstrietes (Namova) Potonié & Kremp, 1954			<u>†</u> -						1									-			r				Knoxisporites (Potonié & Kremp) Neves, 1961
Higher State Higher State State Higher State Higher State Higher State <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td><u> </u></td><td></td><td>_</td><td></td><td>Pseudoannulatisporites n. gen.</td></tr<>							-						_						_		<u> </u>		_		Pseudoannulatisporites n. gen.
Granubatisportes (Doulino) Fotonik & Kremp, 1954 Microsport Somes, 1954 Microsport Somes, 1954 Microsport Somes, 1954 Microsport Somes, 1954 Microsport Somes, 1955 Microsport Somes, 1957 Microsport Somes, 1957 Microsport and Microsport & Micros	-+-+-	┥	+	+		┥╌┼╌		+	+	_		┝─┼	+	-		_	+			-		┝━╋	_		Radialetes Staplin, 1960
Microretuuditaporites (Knox) Potonik & Kremp, 1954 Retuuditaporites (Toranin Neves, 1964 Microretuuditaporites (Toranin Neves, 1964 Microretuuditaporites (Toranin Neves, 1964 Microretuuditaporites (Namova) Potonik & Kremp, 1954 Microretuuditaporites Namova, Potonik & Kremp, 1958 Microretuuditaporites Namova, Potonik & Kremp, 1958 Microretuuditaporites Namova, Potonik & Kremp, 1954							+		╈		-	┝─┾							+			┝╺╋	-+		Granulatisporites (Ibrahim) Potonié & Kremp, 1954
August 1 Reticulatioprities (Brahim) Neves, 1964 Triparties (Scheme) Potonić & Kremp, 1954 Marospox Somers, 1952 Acanthoritetes (Naumova) Potonić & Kremp, 1954 Sienconstritetes (Naumova) Potonić & Kremp, 1956 Dialanconstritetes (Naumova) Potonić & Kremp, 1956 Dialanconstritetes (Naumova) Potonić & Kremp, 1956 Dialanconstritetes Naumova, 1953 Hymenzonstritetes Naumova, 1953 Hymenzonstritetes Naumova, 1953 Hymenzonstritetes Naumova, 1953 Hymenzonstritetes Potonić & Kremp, 1954 Endoparaties Potonić & Kremp, 1954 Endoparaties Potoničes (Naumova) Potoniče & Kremp, 1958 Dialancopark (Naumova) Potoniče & Kremp, 1954					_					1															Microreticulatisporites (Knox) Potonié & Kremp, 1954
Image: Solution of the second seco		Ļ						Ļ				Ц	_	1	Ц				\square			ЦĪ			Reticulatisporites (Ibrahim) Neves, 1964
Autospino Sumies, 1934 Acombariziete (Naumova) Potoniė & Kremp, 1954 Stenconotritiete (Naumova) Potoniė & Kremp, 1956 Diatomoznotritiete (Naumova) Potoniė & Kremp, 1966 Convolutione & Kremp, 1966 Convolutione & Kremp, 1964 Endosporites Wilson & Coe, 1940 Cincturaporites Hacquebard & Barss, 1957 Foucesporites Hacquebard & Barss, 1957 Foundation (1957) Foundation (195		┢	+-+	+	-		+	┝┥	\rightarrow	_		\vdash	-	+		-+	\vdash	\vdash	+	+	\vdash	$\left + \right $	_		Tripartites (Schemel) Potonie & Kremp, 1954
Stenconcritice (Naumova) Potonić & Kremp, 1958 Obstanzanski i standard i stand		┿		+	-	-	-	i t	+		+							+	+	+	┝	\vdash	- • †		Acanthotriletes (Naumova) Potonié & Kremp, 1954
Image: Construction of the set of t																									Stenozonotriletes (Naumova) Potonié & Kremp, 1958
Convoluting of the starting of		\downarrow				-	_		_		-		_	_		-			_	_			_		Diatomozonotriletes (Naumova) Potonie & Kremp, 1956
Amapiculatisporites Potential Provider Street Amapiculatisporites Potential Provider Street Potential Provider Street Potential Provider Street Potenti					-		+	÷	+	-	-	\vdash	-	+-		-			+	+	-	$\left \right $			Convolutispora Holimeister, Staplin & Malloy, 1955
Editosporties Wilson & Cos. 1940 Cincturasporties Balme, 1957 Potossporties Balme, 1957 Potossporties Response Attiz, 1957 Difference Cincturasporties Milson & Cos. 1940 Cincturasporties Balme, 1957 Potossporties (Runova) Potonié & Kremp, 1958 Cincurstanties (Naurova) Potonié & Kremp, 1958 Cincurstanties (Runova) Potonié & Kremp, 1954 Cincurstanties (Runova) Potonié & Kremp, 1954 Cincurstanties (Runova) Potonié & Kremp, 1954 Difficulties (Naurova) Potonié & Kremp, 1954 Potonié & Kremp, 1954 Difficulties (Naurova) Potonié & Kremp, 1954 Rotasport & Savitrisporties Bardwaj, 1955 Savitrisporties Bardwaj, 1955 Difficulties (Naurova) Potonié & Kremp, 1954 Rotasport & Savitrisporties Bardwaj, 1957 Difficulties (Naurova) Potonié & Kremp, 1954 Rotasport & Savitrisporties Bardwaj, 1955 Difficulties (Naurova) Potonié & Kremp, 1954 Rotasport & Difficulties (Naurova) Poton							1				\vdash			-			+		-		┢	$\left \right $			Anapiculatisporites Potonié & Kremp, 1954
Image: Construct of the second sec			t t		ī.								T	T		1	1				1				Endosporites Wilson & Coe, 1940
Potomispores Artia, 1957 Lophozanotrietes (Naumova) Potonié & Kremp, 1958 Chaetosphaerites Pelix, 1894 Schulzospora Kosanke, 1950 Schulzosporake Kremp, 1954									-	_	_														Cincturasporites Hacquebard & Barss, 1957
Poloniešký tek Poloniešký tek Poloniešký tek Poloniešký				+	-		_	+	+	_			_	-		_	+-		_	_	+	$\left \right $	_		Foveosporites Balme, 1957
Chaetophærites Pelix, 1894 Schulzospora Kosanke, 1950 Sporonites (R. Potonië) Burshim, 1933 Cingulizonates (Dybová & Jachowicz) Buterworth & Staplin, 19 Granisporites Dybová & Jachowicz, 1957 Dictyptiletes (Namova) Potonië & Kremp, 1954 Dictyptiletes (Namova) Potonië & Kremp, 1954 Apiculatisporites Dybová & Jachowicz, 1957 Triquitrites (Wilson & Coe) Potonië & Kremp, 1954 Rotaspora Schemel, 1950 Dictyptiletes (Namova) Potonië & Kremp, 1954 Rotaspora Schemel, 1950 Dictyptiletes (Namova) Potonië & Kremp, 1954 Rotaspora Schemel, 1950 Dictyptiletes (Namova), 1937 Savitrisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1957 Lophotritetes (Namova) Potonië & Kremp, 1954 Microsporites Dybová & Jachowicz, 1957 Lophotrites (Potonië & Kremp, 1954 Africatisporites Dybová & Jachowicz, 1957 Lophotrites (Potonië & Kremp, 1954 Microsporites Dybová & Jachowicz, 1957 Lophotrites (Potonië & Kremp, 1954 Africatisporites Dybová & Jachowicz, 1957 Lophotrites (Namova) Potonië & Kremp, 1954 Microsporites Dybová & Jachowicz, 1957 Laevigatosportes Drahim, 1933 Afrensisporites Potonië & Kremp, 1954 Kaitisporites Staplin & Jansonius, 1964 Cirratriadites Wilson & Coe, 190 Tuberculatisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1964 Convervalutisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1964 Convervalutisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1964 Convervalutisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1954 Convervalutisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1954 Convervalutisporites Dybová & Jachowicz, 1957 Radizonates Staplin & Jansonius, 1954			+		i i		+	+	+	+	+			-		+	+			-	┢		-		Lophozonotriletes (Naumova) Potonié & Kremp. 1958
Schulzospora Kosanke, 1950 Sporonites (R. Potonié & Kremp, 1933 Cinguizonates (Dybová & Jachowicz, 1957 Pustulatizorites Potonié & Kremp, 1954 Distribution <																							_		Chaetosphaerites Felix, 1894
Sporonites (K. Potone) Ibrahim, 1933 Cinguizonates (C. Potoné) Butterworth & Staplin, 19 Granisporites Dybová & Jachowicz, 1957 Pustulatisporites Potoné & Kremp, 1954 Dictyotriletes (Naumova) Potoné & Kremp, 1954 Pustulatisporites Dybová & Jachowicz, 1957 Dictyotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Dictyotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Dictyotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Dictyotriletes (Naumova), 1935 Savitrisporites Bhardwaj, 1955 Reitschosporo S., W. & B., 1944 Dictyotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Lapiotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Lapiotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Lapiotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Lapiotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Dybová & Jachowicz, 1957 Lapiotriletes (Naumova) Potoné & Kremp, 1954 Verrucosisporites Potoné & K		-	\vdash		_		F	╉╌┥	-	_						_	·~?								Schulzospora Kosanke, 1950
Granisporties (Dytowa & Jachowicz, 1957 Pustulatisporites Dybová & Jachowicz, 1957 Dictyotrilets (Naumova) Potonié & Kremp, 1954 Rotaspora Schemel, 1950 Dictyotrilitistrium Naumova, 1937 Savitrisporites Bhardwaj, 1955 Reinschospora S, W. & B., 1944 Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dijkstra, 1946 Cristatisporites Dijkstra, 1946 Ciraticulatisporites Dijkstra, 1946 Ciraticulatisporites Dijkstra, 1946 Dictyotrilets Wilson & Coe, 1940 Dictyotrilets Wilson & Coe, 1940 Dictyotrilets Wilson & Coe, 1940 Dictyotrilets Wilson & Coe, 1957 Dictyotrilets Staplin & Jansonius, 1964 Ciratiradites Wilson & Coe, 1940 Dictyotrilets Chaines Wilson & Coe, 1957 Raditizopartes Nonié & Kremp, 1954 Ciratirindites Wilson & Coe, 1940		┝				+ + -		+	┥	_		┝╌┝	-				+		_	-	-		_		Sporonites (R. Potonie) Ibrahim, 1933
Pustulatisporites Potonié & Kremp, 1954 Ibrahimispores Artüz, 1957 Dictyorities (Namova) Potonié & Kremp, 1954 Apiculatisporites (Dybová & Jachowicz, 1957 Triquirities (Wilson & Coe) Potonié & Kremp, 1954 Rotaspora Schemel, 1950 Brachytriistrium Naumova, 1937 Sautrisporites Bhardwaj, 1955 Brachytriistrium Naumova, 1937 Sautrisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1954 Witsonia Kosanke, 1954 Brachytriites (Naumova) Potonié & Kremp, 1954 Brachytriites (Naumova) Potonié & Kremp, 1954 Brachytriites (Naumova) Potonié & Kremp, 1954 Brachytries Dybová & Jachowicz, 1957 Laevigatisporites Numova Brachytries Dybová & Jachowicz, 1957 Braditisporites Dybová & Jachowicz, 1957		\uparrow					+-	+ +		-	1	┝╼┾							-+	+	+	┝━┽			Granisporites Dybová & Jachowicz, 1957
Image: Second	_								_								<u>, e</u>	101							Pustulatisporites Potonié & Kremp, 1954
Dictyotrietes (Naumova) Potonie & Kremp, 1954 Apiculatisporites (Ibrahim) Potonie & Kremp, 1954 Apiculatisporites Dybová & Jachowicz, 1957 Triquitrites (Wilson & Coe) Potonié & Kremp, 1954 Rotaspora Schemel, 1950 Brachytrilistrium Naumova, 1937 Savitrisporites Bhardwaj, 1955 Caliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1954 Microsporites Dijkstra, 1946 Cristatisporites Chonié & Kremp, 1954 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Conié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Potonié & Kremp, 1954 <						<u> </u>			_	_											ļ				Ibrahimispores Artüz, 1957
Aprenation in Strate Sybox & Jachowicz, 1957 Verrucosisporites Dybox & Jachowicz, 1957 Brachtriker		┢		-				┽┼	┥	-	+	┝─┥		-					-	_	-		_		Dictyotriletes (Naumova) Potonie & Kremp, 1954
Triquitrites (Wilson & Coe) Potonié & Kremp, 1954 Rotaspora Schemel, 1950 Brachytrilistrium Naumova, 1937 Savitrisporites Bhardwaj, 1955 Reinschospora S., W. & B., 1944 Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1954 Microsporites Naumova) Potonié & Kremp, 1954 Microsporites Chanim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Cirratriradites Wilson & Coe, 1940 Tuberculatisporites (Drahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Convertucoisporites Potonié & Kremp, 1954 Wilsonia Kosanke, 1950 Vestispord (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Bhardwaj, 1954		\Box					┢				-	\vdash	+	+	\vdash	-+	+	┝┼	+	+	+	╎╌┾	┥		Verrucosisporites Dybová & Jachowicz, 1957
Rotaspora Schemel, 1950 Brachytrilistrium Naumova, 1937 Savitrisporites Bhardwaj, 1955 Reinschospora S., W. & B., 1944 Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Optonié & Kremp, 1954 Microsporites Dijkstra, 1946 Cristatisporites Potonié & Kremp, 1954 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Laevigatisporites Obtonié & Kremp, 1954 Laevigatosporites Ibrahim, 1933 Laevigatosporites Ibrahim, 1934 Laevigatosporites Obtonié & Kremp, 1954 Laevigatosporites Staplin & Jansonius, 1964 Cirratiradites Wilson & Coe, 1940 Tuberculatisporites Obtonié & Kremp, 1954 Laevigatosporites Potonié & Kremp, 1954 Laevigatospora (Wilson & Hoffmeister) Bhardwaj, 1957	-HT																								Triquitrites (Wilson & Coe) Potonié & Kremp, 1954
Brachytriistrum Naumova, 1937 Savitrisporites Bhardwaj, 1955 Reinschospord S., W. & B., 1944 Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1957 Laevigatisporites Naumova) Potonié & Kremp, 1954 Microsporites Dijkstra, 1946 Cristatisporites Cytonié & Kremp, 1954 Microsporites S., W. & B., 1944 Laevigatosporites Cytonié & Kremp, 1954 Microsporites S., W. & B., 1944 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Cirratriradites Wilson & Coe, 1940 Tuberculatisporites Staplin & Jansonius, 1964 Converrucosisporites Staplin & Jansonius, 1954 Wilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Wilsonia Kosanke, 1950 Data Data Data Data Data Data Data Data		┢		\square		\square	+	\square	-		-	┨						Ц	\neg			$ \downarrow \downarrow$	_		Rotaspora Schemel, 1950
Bachtersportes Dyborts S., W. & B., 1934 Reinschosport S., W. & B., 1944 Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Opiová & Jachowicz, 1957 Laevigatisporites Opiová & Jachowicz, 1957 Microsporites Dijkstra, 1946 Cristatisporites (Potonié & Kremp) Butterworth & Staplin, 1964 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatisporites Vilson & Coe, 1940 Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Converrucosisporites Potonié & Kremp, 1954 Vilsonia Kosanke, 1950 Vilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Vestisporites Potonié & Kremp, 1954 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Circuisporites Bhardwaj, 1954	-+	+-	\vdash	\vdash		╎┝	┥	╉┥	+	+	+	\vdash		-	\vdash		-	$\left - \right $	_+	+	\vdash	$\left + \right $	+	_	Brachytriustrium Naumova, 1937 Sanitrisporites Bhardwai 1955
Canaliculatisporites Dybová & Jachowicz, 1957 Laevigatisporites Dybová & Jachowicz, 1957 Lophotriletes (Naumova) Potonié & Kremp, 1954 Microsporites Dijkstra, 1946 Cristatisporites Cybová & Kremp) Butterworth & Staplin, 1964 Florinites S., W. & B., 1944 Laevigatosporites Dijkstra, 1946 Cristatisporites (Notice & Kremp) Butterworth & Staplin, 1964 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Cirratriradites Wilson & Coe, 1940 Tuberculatisporites Staplin (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Wilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Bardia Convertucosisporites Bhardwaj, 1954 Dailon Converties Potonié & Kremp, 1954 Dailon Convertucosisporites Potonié & Kremp, 1954 Dailon Convertucosisporites Potonié & Kremp, 1954											-	H		+		-+-	+		+		1-	-+	+		Reinschospora S., W. & B., 1944
Laevigatisporites Dybová & Jachowicz, 1957 Lophotriletes (Naumova) Potonié & Kremp, 1954 Microsporites Dijkstra, 1946 Cristatisporites (Potonié & Kremp) Butterworth & Staplin, 1964 Florinites S., W. & B., 1944 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Laevigatosporites Wilson & Coe, 1940 Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Convertucosisporites Potonié & Kremp, 1954 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Convertucosisporites Potonié & Kremp, 1954 Laevigatosporites Potonié & Kremp, 1954 Latosporites Bhardwaj, 1954							T																		Canaliculatisporites Dybová & Jachowicz, 1957
Lophotriletes (Naumova) Potonie & Kremp, 1954 Microsporites Dijkstra, 1946 Cristatisporites (Potonié & Kremp) Butterworth & Staplin, 1964 Florinites S., W. & B., 1944 Antensisporites Potonié & Kremp, 1954 Antensisporites Potonié & Kremp, 1954 Antensisporites Vision & Coe, 1940 Cristatisporites Vision & Coe, 1940 Cristatisporites Staplin & Jansonius, 1964 Convertucosisporites Potonié & Kremp, 1954 Kremp, 1954 Visionia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Vestispora Wilson & Kremp, 1954 Vestispora Wilson & Kremp, 1954 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Vestisporites Potonié & Kremp, 1954 Vestisporites Potonié & Kremp, 1954		+		+				┼┝	4	_		┞╌┥	_	-	\square	_	1				-	\vdash	1		Laevigatisporites Dybová & Jachowicz, 1957
Image: Substance Substanc				┿╌┤		\vdash	+	┼┾	┥	+	+-	┝┥	+	+	┝╌┼		+-	$\left \cdot \right $	-	+	+		-+		Lophotriletes (Naumova) Polonie & Kremp, 1954 Microsporites Dijkstra 1946
Florinites S., W. & B., 1944 Laevigatosporites Ibrahim, 1933 Ahrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Cirratriradites Wilson & Coe, 1940 Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Convertucosisporites Potonié & Kremp, 1954 Wilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Data Staplin & Jansonius, 1954 Data Staplin & Jansonius, 1954 Data Staplin & Jansonius, 1954		Ē					+				+			+	╞╌┼	+	+	$\left \right $	+	+	\vdash	$\left \right $	┥		Cristatisporites (Potonié & Kremp) Butterworth & Staplin, 1964
Image: Construction of the second system			\square					$\downarrow \downarrow$	1	\square	<u> </u>			1											Florinites S., W. & B., 1944
Anrensisporites Potonié & Kremp, 1954 Raistrickia S., W. & B., 1944 Cirratriradites Wilson & Coe, 1940 Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Converrucosisporites Potonié & Kremp, 1954 Vilsonia Kosanke, 1950 Vilsonia Kosanke, 1950 Vilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Carvisporites Potonié & Kremp, 1954 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Carvisporites Bhardwaj, 1954 Convergence Artice Bhardwaj, 1954			$\left \cdot \right $	+			+	+	+		-	\square	+	-	\square				-	\downarrow		Π			Laevigatosporites Ibrahim, 1933
Image: Index Dispersive State Index Dispersive State Image: Index Dispersive State Image: Index Dindex Image: Index Dispersive St		+		+-				+	+	+	+	Η	-	-	\vdash		╉╼		╺╼┽	+	╀	┝┼	┥		Aurensusporties Polonie & Kremp, 1954 Raistrickia S W & B 1944
Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957 Radiizonates Staplin & Jansonius, 1964 Converrucosisporites Potonić & Kremp, 1954 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonić & Kremp, 1954 Gravisporites Bhardwaj, 1957 Ballonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Ballonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Ballonia Kosanke, 1954 Ballonia Kosanke, 1954 Ballonia Kosanke, 1954		1				\vdash	+	+	+	+-	t	H		+	\vdash	-+-	-	┝╶┤	-+	┥	†	┝━┥	+		Cirratriradites Wilson & Coe, 1940
Radiizonates Staplin & Jansonius, 1964 Converrucosisporites Potonié & Kremp, 1954 Wilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Gravisporites Bhardwaj, 1954 Destinger Apriles Bhardwaj, 1954			-								<u> </u>					_									Tuberculatisporites (Ibrahim) Dybová & Jachowicz, 1957
Conversucosisporites Potonić & Kremp, 1954 Wilsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonić & Kremp, 1954 Gravisporites Bhardwaj, 1954 Deliver and the second		\downarrow						17	\square			Ц			ЦĪ							\square			Radiizonates Staplin & Jansonius, 1964
Witsonia Kosanke, 1950 Vestispora (Wilson & Hoffmeister) Bhardwaj, 1957 Latosporites Potonié & Kremp, 1954 Gravisporites Bhardwaj, 1954	<u> </u>	 			_			+ +	+	_		┞┼								+	+-	\vdash			Converrucosisporites Potonié & Kremp, 1954 Wilsonia Kosanka, 1950
Latosportes Potnicker, 2natuwaj, 1997 Latosportes Potnick & Kremp, 1954 Gravisportes Bhardwaj, 1954		+		-		\vdash	+	+	+	- <u> </u> -	-	\vdash	+	-	\vdash	+	+	$\left \right $	+	+	╀	┝╼┿	-+		Vestispora (Wilson & Hoffmeister) Bhardwai 1957
Gravisporites Bhardwaj, 1954		†-					+-	+	+	+	-	\vdash	+	+		+	1		+	┢	\uparrow	┝┥	+	1.	Latosporites Potonié & Kremp, 1954
												Г				_					Γ				Gravisporites Bhardwaj, 1954
Beurspores Artuz, 1957		+	\square				+	+	\rightarrow		+-	$\left \right $		_		-+	+			+	-	╞╌╞	\rightarrow		Bellispores Artüz, 1957

□ - 5º/₀

□ 5 - 10⁰/₀

10-20%/0

20 — 50º/₀

50 — 100°/o

Table 3

determined as Namurian C. This fact confirms the view of Dybová who believes that the C. varius spores appear in Namurian C.

The Namurian-Westphalian boundary which, on the basis of the microspore analysis, has been set at a depth of 732.60 m, is confirmed by the appearance of megaspores of the species Laevigatisporites glabratus and Apiculatisporites breviapiculatus which are characteristic of Westphalian. The Westphalian age of deposits, situated higher than 738.70 m, is also testified to by the occurrence of such species as, for instance, Valvisisporites auritus, Lagenosisporites rugosus, Zonalesporites superbus and Cystosporites verrucosus. A few new species as Lagenicula brevispinosa n. sp., L. clavata n. sp., L. baculata n. sp., Calamospora ovata n. sp. and C. magna n. sp., also appear in this beds.

Like in the microspore material, in this complex of deposits, there is also recorded a repeated optimum of the occurrence of megaspores and a considerable specific differentiation.

In the Carboniferous section of the Chełm I boring, the boundaries between particular stratigraphic units have been set on the basis of macrofaunistic (Korejwo, 1960b), microfaunistic (Liszka, 1960) and microfloristic (Jachowicz, 1960) studies. Results, obtained in the present work, do not coincide in certain respects with those, reached by Jachowicz and Liszka. This is shown in the Table 4.

The results of my work are in conformity with those, obtained by Korejwo (1960b) on the basis of macrofauna. On the other hand, differences occur when the data, obtained on the basis of microflora, are compared with the results of microfaunistic studies. According to Liszka (1960), the boundary between Viséan and Namurian occurs at a depth of 966 m, which is not confirmed either by microspore assemblages, I found at depths between 966 and 1,073.7 m which are typically Namurian in character, or by the composition of macrofauna, described by Korejwo.

According to Jachowicz (1960, p. 75): "An exact determination of boundaries between Namurian A and B, Namurian B and C, and Namurian C and Westphalian is difficult because of an irregular sampling of the cores under study". This author states that the complex of deposits at a depth, ranging between 577.80 and 642.40 m, corresponds to the Ruda Beds in Upper Silesia, that between 655,60 and 1,075.90 m is Namurian, and the sample, coming from a depth between 1,192.20 and 1,197.70, is Viséan. Comparing these results with those, I obtained, one may state that the boundary between Viséan and Namurian lies, in both cases, in the same place. Certain differences occur in determining the Namurian-Westphalian boundary which could not be exactly settled by Jachowicz, since he had not at his disposal appropriate microfloristic materials.

Table 4

Division of Carboniferous of the Chełm I boring, on the basis of microflora, macrofauna and microfauna

	Micro	oflora		Macrofa	una	Microfauna					
Jachowicz	, 1960	Karczewska	i, 1967	Korejwo,	1960	Liszka, 1	960				
Depth (in m)	Age	Depth (in m)	Age	Depth (in m)	Age	Depth (in m)	Age				
577.80— 642.40	Lower Westphalian										
655.60— 701.00	Upper Namurian	580.20- 732.60	Westphalian A(+B?)	580.20— 733.50	Lower Westphalian	580.00— 733.00	Westphalian				
728.00— 782.50	Lower Namurian	743.50— 829.30	Namurian C								
818.50 - 855.50	upper part of Lower Namurian	852.00— 950.70	Namurian B	733.50-1,099.25	Namurian	733.00— 966.00	Namurian				
855.50-1.075.90	lower part	1.002.50-1.073.70	Namurian								
-,	Namurian	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A			966.00-1,093.00	Viséan				
		1,099.25—1,195.10	Upper Viséan		Upper						
_		1,195.10—1,205.60	Lower (?) Viséan	1.099.25-1,207.70	Viséan						

275

DESCRIPTIONS

MEGASPORES

Anteturma **Sporites** H. Potonié, 1893 Turma **Triletes** (Reinsch, 1881) Potonié & Kremp, 1954 Subturma **Azonotriletes** Luber, 1935 Infraturma **Laevigati** (Bennie & Kidston, 1886) Potonié & Kremp, 1954 Genus Calamospora Schopf, Wilson & Bentall, 1944 Type species: Calamospora hartungiana Schopf, 1944

Description of the genus. — Spores round or oval in outline. According to the authors of the genus, dimensions of these spores "vary considerably, i. e. from about 40 μ (or, in underdeveloped specimens, even less) to several hundreds μ ". In *Calamospora magna*, described in the present work, the upper limit is shifted even to 2,000 μ . Triradiate figure with arms shorter than a half of the spore radius. Lips may be present. Contact area may display certain differences in sculpture or thickness of exospore. Arcuate ridges mostly lacking or, if present, very slightly outlined. Spore exine strongly folded. Folds may run parallel to the spore margin and take a semilunar or almost round shape. This very complex folding of spore exine constitutes one of the most important diagnostic characters of species. Thickness of exospore amounts to from 2 to 17 μ . Depending on the thickness, spores are yellow to red-brown in transmitted light and tan-brown in reflected light.

Remarks. — Some authors, as Zerndt (1934, 1937a) or Dijkstra (1946), described such megaspores as those belonging to Calamariaceae. Zerndt (1937) describes them as Type 2, determines features characteristic of the entire group and does not separate particular species, although he emphasizes (1937a, p. 5) that "it is almost certain that spores of Type 2do not belong to one but to several species". Without checking Zerndt's materials, it is impossible to classify megaspores of Type 2 (of Zerndt) to any definite species. They may be only assigned to the genus Calamospora and considered as most similar to the species C. laevigata (Ibrahim) and C. sinuosa (Horst).

Calamospora laevigata (Ibrahim, 1933) Schopf, Wilson & Bentall, 1944 (Pl. I, Figs. 2 and 3)

1933. Laevigati-sporites laevigatus Ibrahim; A. C. Ibrahim, Sporenformen..., p. 17, Pl. 6, Fig. 46.

1944. Calamospora laevigatus (Ibrahim); J. M. Schopf, L. R. Wilson & R. Bentall, Annotated synopsis..., p. 52.

^{1934.} L. laevigatus Ibrahim; F. Loose, Sporenformen..., p. 146, Pl. 7, Fig. 36.

1955. C. laevigata (Ibrahim) S. W. & B.; R. Potonié & G. Kremp, Die Sporae..., p. 48, Pl. 12, Fig. 136 a, b.

1959. C. cf. C. laevigata; M. R. Winslow, Upper Mississippian..., p. 60, Pl. 13, Fig. 11.

1962. C.laevigata (Ibrahim) S. W. & B.; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 57, Pl. 1, Fig. 1.

Material. — Twenty four well-preserved specimens. Dimensions (in μ):

	Z. Pb. B32	Z. Pb. G39	Z. Pb. E32
Diameter of spore	342.5	510	620
Thickness of exospore	7	5	7

Description. — Megaspores round or oval in outline. Triradiate figure not always visible. Length of arms of triradiate figure does not exceed 1/3 of the length of spore radius. Surface of spores smooth, lustrous and folded. Folds are often semilunar in shape. In the reflected light, spores are brown or black and in the transmitted light — yellow, tan-brown or dark-red.

Remarks. — Megaspores of *C. laevigata* from Chełm differ from those, described by Potonié and Kremp, in only slightly larger dimensions.

Occurrence. — Poland: the Chełm I boring (samples 38, 40 and 573) — Viséan and Westphalian A. Upper Silesia — Namurian A. Czechoslovakia: Moravska Ostrava — Namurian A. Germany — Westphalian B. U.S.S.R.: the Novomoskovsk and Petropavlovsk regions — Viséan. U.S.A.: the Illinois Coalfield — Upper Namurian and Westphalian.

Calamospora sinuosa (Horst, 1943) Potonié & Kremp, 1955 (Pl. I, Fig. 1)

1943. Triletes (laevigati) sinuosus; U. Horst, Mikrostratigraphischer Beitrag..., Fig. 3.

1955. Calamospora (Triletes) sinuosa (Horst); R. Potonié & G. Kremp, Die Sporae..., p. 48.

1955. C. sinuosa (Horst); U. Horst, Die Sporae..., p. 155, Pl. 17, Fig. 3.

1959. C. cf. C. sinuosa; M. R. Winslow, Upper Mississippian..., p. 60, Pl. 13, Fig. 10.

Material. — Seven well-preserved specimens. Dimensions (in μ):

	Z. Pb. B2	Z. Pb. 122	Z. Pb. B37
Diameter of spore	750	902.5	1,000
Length of Y rays	150	175	175
Thickness of exospore	7	7	6

Description. — Megaspores round or oval in shape. Triradiate figure not always visible. Arms of triradiate figure often slightly elevated. Some-

times, there are visible slightly marked traces of contact fields. Surface of spore exine smooth, strongly folded. Folds run parallel to the spore margin. Particular folds often intersect each other at a right angle. In transmitted light, spores are red-brown, in reflected light—tan-brown to black.

Remarks. — Megaspores of C. sinuosa from Chełm differ from those, described by Horst (1943), only in the fact that they occur in younger beds since their range more or less corresponds to the stratigraphic position of C. cf. Calamospora sinuosa, described by Winslow (1959).

Occurrence. — Poland: Chełm I (samples 38 and 40) — Westphalian A; Upper Silesia — Namurian A. Czechoslovakia (Moravska Ostrava) — Namurian A. U.S.A. (the Illinois Coalfield) — Westphalian A.

> Calamospora magna n. sp. (Pl. I, Fig. 5; Pl. IX, Fig. 18)

Holotypus: Specimen No. Z. Pb. K2, Pl. IX, Fig. 18. Stratum typicum: Namurian A, Westphalian A. Locus typicus: Chełm I, sample 399. Derivatio nominis: Lat. magna = large, on account of its very large dimensions.

Diagnosis.—Calamospore very large with a relatively thin and densely folded exospore. Folds run in different directions.

Material. — Eleven well-preserved specimens.

Dimensions (in μ):

	Z. Pb. G7	Z. Pb. D9	Z. Pb. K2
Diameter of spore	900	1,500	2,000
inickness of exospore	5	3.0	2.5

Description. — Megaspores round or oval in outline. Triradiate figure very poorly visible or, sometimes — on account of a strong folding of spore exine — invisible at all. Length of arms of triradiate figure does not exceed $1/_3$ of spore radius. Spore exine very densely folded with folds running in different directions. Surface of spore exine smooth, mat. As compared with the size of megaspores, exospore is very thin. In reflected light, spores are tan-brown, in transmitted light — yellow-brown.

Remarks. — C. magna n. sp. differs from the species, previously described, in very large dimensions and incommensurably thin exospore. The latter feature is for a certainty a cause of a very strong folding of exospore. C. magna n. sp. takes, among megaspores, a position similar to that of C. perrugosa (Loose) among small spores. C. perrugosa is marked, among microspores, by largest dimensions and a relatively thin and strongly folded exospore. A general outline of these forms is almost identical. At present, it is difficult to find whether or not any closer relationship takes

place between these two forms. However, a great morphological similarity may be emphasized.

Occurrence. — Poland: the Chełm I boring (samples 399 and 39) — Namurian A and Westphalian A.

Calamospora ovata n. sp.

(Pl. I, Fig. 4)

Holotypus: Specimen No. Z. Pb. G. 18; Pl. I, Fig. 4.

Stratum typicum: Westphalian A.

Locus typicus: Chełm I, sample 38.

Derivatio nominis: Lat. ovata = ovate; on account of a predominant number of ovate forms.

Diagnosis. — Megaspores ovate in outline. Spore exine very slightly folded, developing only one or two longitudinal folds. Spore surface slightly punctate.

Material. — Seven well-preserved specimens. Dimensions (in μ):

	Z. Pb. A14	Z. Pb. G18	Z. Pb. A14
Length of spore	837	1,050.0	1,200
Width of spore	662	750	775.0
Thickness of exospore	7.5	12.5	15

Description. — Megaspores ovate, rarely round in outline. Triradiate figure visible in almost all specimens. Length of arms of the Y figure does not exceed 1/2 of spore radius. Scar of triradiate figure is often split. Spore exine slightly folded. Most often, there occur one or two folds which run longitudinally. Spore surface slightly punctate. In reflected light, spores are tan-brown, in transmitted light — yellow-brown.

Remarks. — Megaspores of C. ovata n. sp. are, to the greatest extent, similar to C. sinuosa (Horst) from which they differ, however, in a less complex folding of exospore. In C. sinuosa, exospore is very strongly folded, with folds running parallel to the spore margin. In contrast to C. sinuosa, C. ovata n. sp. has not a so distinctly marked contact area.

Occurrence. — Poland: the Chełm I boring — Westphalian A.

Calamospora sp. (Pl. I, Fig. 6)

Material. — Four not very well-preserved specimens. Dimensions (in μ):

	Z. Pb. A11	Z. Pb. I17	Z. Pb. A11
Diameter of spore .	 575	625	750
Thickness of exospore	 7.5	10	10

Description. — Megaspores round in outline. Triradiate figure invisible or very slightly outlined. In reflected light, spores are tan-brown, in transmitted light — yellow-brown.

Remarks. — Megaspores of Calamospora sp. are, to the greatest extent, similar to the spores of C. laevigata (Ibrahim) from which they, however, differ in slightly larger dimensions and thicker and fine-punctate exospore.

Occurrence. — Poland: the Chełm I boring (sample 38) — Westphalian A.

Genus Laevigatisporites (Ibrahim) Potonié & Kremp, 1954 Type species: Laevigatisporites primus (Wicher, 1934)'

Laevigatisporites glabratus (Zerndt, 1930) Potonié & Kremp, 1955 (sensu

Dijkstra)

(Pl. I, Figs. 7, 8)

- 1946. Triletes glabratus Zerndt, Typ 10 Zerndt, Typ 9 Zerndt = Typ 10 Zerndt; S. J. Dijkstra, Eine monographische..., p. 26, Pl. 1, Figs. 1-3, 5-8; Pl. 1, Fig. 4?; Pl. 4, Fig. 35 (here earlier synonymy included).
- 1947. T. glabratus Zerndt; A. T. Cross, Spore floras..., p. 298, Pl. 2, Fig. 58.
- 1947. T. reinschi (Ibrahim) Schopf; A. T. Cross, Ibid., p. 296, Pl. 2, Figs. 28-40.
- 1951. T. glabratus Zerndt, 1930 (sensu Dijkstra); M. Kalibová, Megaspory..., p. 38, Pl. 2, Figs. 7—10.
- 1955. T. glabratus Zerndt; S. Dijkstra, Megaspores..., p. 328, Pl. 35, Fig. 1.
- 1955. Laevigatisporites glabratus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 53, Pl. 1, Figs. 4, 5, 7, 8.
- 1955. L. primus (Wicher) Potonié & Kremp; R. Potonié & G. Kremp, Ibid., p. 55, Pl. 1, Figs. 2, 3, 6.
- 1955. L. reinschi Ibrahim; R. Potonié & G. Kremp, Ibid., p. 55, Pl. 2, Figs. 9, 10.
- 1956. Triletes glabratus; M. C. Bonet & S. J. Dijkstra, Megaspores..., p. 256, Pl. 43, Fig. 1, Pl. 49, Fig. 9.
- 1958. Laevigatisporites glabratus (J. Zerndt) R. Potonié & G. Kremp, sensu Dijkstra; P. Piérart, Palynologie..., p. 34, Pl. 1, Figs. 1—2.
- 1959. Triletes glabratus Zerndt, 1930 (sensu Dijkstra); M. Winslow, Upper Mississippian..., p. 28, Pl. 6, Figs. 7-10.
- 1961. T. glabratus Zerndt; M. V. Oshurkova, Megaspory, p. 110, Pl. 9, Figs. 1, 2.
- 1962. Megalaevigati glabratus (Zerndt) Ishchenko; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 63, Pl. 4, Fig. 2.
- 1963. Laevigatisporites glabratus (Zerndt) Potonié & Kremp sensu Dijkstra; P. Biérart, Mégaspores..., p. 232, Pl. 1, Fig. 1.
- 1965. L. glabratus (Zerndt) Potonié & Kremp sensu Dijkstra; E. Spinner, Westphalian D megaspores..., p. 87, Pl. 14, Figs. 1, 2.

Material. — Three well-preserved specimens and a few fragments. Dimensions (in μ):

	Z. Pb. G33	Z. Pb. H. 20	Z. Pb. B39
Diameter of spore	437	1,300	1,780
Thickness of exospore	62	25	40

Description. — Megaspores trilete; specimens are flattened, in proximal-distal direction round, oval or triangular in outline. Immature, small megaspores have the arms of the Y figure ridgelike with a small prominence at the top and distinctly marked arcuate ridges. Contact area occupies about 2/3 of the proximal surface of the spore. Large, mature megaspores have an open germination cleft. Arcuate lines less distinct or almost invisible. Contact area occupies about 1/3 to 1/2 of the proximal surface of the spore. Spores smooth, lustrous, brown to black.

Remarks. — Like Dijkstra and Piérart, I have assigned the spores, described by Zerndt as Types 9 and 10, to the species Laevigatisporites glabratus. At first, Zerndt considered them to represent two separate species. But when the megaspores from the Sigillaria cones have been described by Bocheński (1936), it turned out that the same cone contained spores 440 to 2,700 μ in diameter, and underdeveloped spores which were triangular, thicker than the normal ones and with strongly marked lines of triradiate figure. Referring to Bocheński's work, Zerndt (1938) stated that finding of megaspores of Types 9 and 10 in the same cone is of a considerable importance to the species Triletes glabratus and, since then, only Type 10 has been mentioned by him in stratigraphic tables.

In my opinion, there are no reliable grounds to distinguish such species as Laevigatisporites primus (Wicher) and Laevigatisporites reinschi Ibrahim, as it has been done by Potonié and Kremp (1955). Erecting the species Sporites primus, Wicher assigned only the specific name to the spores, described by Kidston and Zerndt as Triletes Type I Kidston. He found the species Sporonites reinschi, previously erected by Ibrahim (1932) to be identical with Sporites primus, he erected himself and — contrary to the law of priority — included Sporonites reinschi Ibrahim, 1932 in the synonymy of Sp. primus Wicher, 1934. After the publication of Bocheński's work, it became clear that the spores of Triletes Type I Kidston (= Sporonites reinschi = Sporites primus) and Triletes glabratus Zerndt belong to the same species. Triletes glabratus Zerndt, 1930 is the oldest specific name and, therefore, it is entitled to the priority.

Affinity. – Sigillariostrobus czarnockii Bocheński, 1936.

Occurrence. — Poland: Upper Silesia-Westphalian A-D; Chełm I boring (samples 38, 40 and 154) — Westphalian A. Czechoslovakia — Westphalian B-Stephanian B. France — Westphalian B and D. Germany — Westphalian A — C. The Netherlands — Westphalian A — C. Spain — Westphalian A. Belgium — Westphalian C. Turkey — Westphalian C-D. U.S.A. — Westphalian. U.S.S.R., the Karaganda Coalfield — Middle Carbonifereous, the Donetz Coalfield and its western extension — Westphalian A-C.

Laevigatisporites fulgens (Zerndt, 1937) Potonié & Kremp, 1955 (Pl. I, Fig. 11)

1931. Typ 8, Zerndt; J. Zerndt, Megasporen..., p. 171, Pl. 3, Figs. 9, 10.

- 1937. Triletes fulgens Zerndt, Type 8; J. Zerndt, Les mégaspores..., p. 3, 5, Fig. 2, Pl. 1, Figs. 1—9.
- 1938. Typ 8, Zerndt; J. Zerndt, Die Eignung..., p. 1715, 1720, Pl. 1, 2.
- 1947. Triletes fulgens (?); A. T. Cross, Spore floras..., p. 297, Pl. 2, Figs. 50, 56-57.
- 1950. Triletes fulgens Zerndt; C. A. Arnold, Megaspores..., p. 79, Pl. 12.
- 1955. Laevigatisporites (Triletes) fulgens (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 53.

Material. — About 500 well-preserved specimens. Dimensions (in μ):

_			5-12	
Diameter of spore	425	475	750	332
Length of radii of triradiate figure .	140	162	250	100
Thickness of radii of triradiate figure	32	25	50	60
Width of arcuate ridges	27	25	38	38
Thickness of exospore	15	20	35	40

Z. Pb. E33 Z. Pb. H9 Z. Pb. D29 Z. Pb. E15

Description. — Trilete megaspores, round in outline. Radii of triradiate figure, ridgelike in shape, run straight or slightly undulate. Arcuate ridges mostly distinctly marked. Contact area smooth, sometimes with certain irregularities, probably caused by an internal folding of the spore. The remaining part of the spore surface smooth, lustrous. Spores are dark-brown or black.

A specimen with four radial ridges has been found among the forms, described above. The diameter of this spore is smaller than that of normal ones. This form is identical with that, figured by Zerndt (1937, Pl. 1, Fig.4).

Remarks. — Megaspores of L. fulgens from Chełm differ from those, described by Zerndt (1931, 1937a), only in slightly smaller mean dimensions. Most forms, found by Zerndt, had their diameters varying from 550 to 575 μ . These magnitudes are, however, within limits of the specific variation and all proportions in the spore structure are identical.

Occurrence. — Poland: Upper Silesia — Namurian A, Chełm I boring (samples 527, 573 and 575) — Viséan. U.S.A. (Michigan Coalfield) — Lower Pennsylvanian (Namurian); States of Virginia and Kentucky — Pennsylvanian.

Infraturma **Apiculati** (Bennie & Kidston, 1886) Potonié & Kremp, 1956 Subinfraturma **Nodati** Dybová & Jachowicz, 1957

Genus Apiculatisporites Ibrahim, 1933 (non Bennie & Kidston) Type species: Apiculatisporites aculeatus Ibrahim, 1933

Apiculatisporites breviapiculatus Danzé, Levet-Carette & Loboziak, 1964 (Pl. I, Fig. 9)

1964. Apiculatisporites breviapiculatus Danzé, Levet-Carette & Loboziak; J. Danzé, J. Levet-Carette & S. Loboziak, Révision des Spores..., p. 21, Pl. 3, Figs. 1 a-b, 2 a-b. Material. — Nine complete specimens and a few fragments. Dimensions (in μ):

2	. Pb. A32	Z [.] Pb. A32	Z. Pb. H2	Z . Pb. A32
Spore diameter	1,325	1,600	1,750	2,000
Height of cones	40-47.5	55-75	37-60	52—63
Width of cones	37-47	40-47	30-40	37—49
Diameter of granules on contact area	5-7.5	58	5-20	- ii
Number of cones on spore equator	52	56	40	56

Description. — Trilete megaspores; specimens, flattened along equator, round or oval. Arms of Y-figure narrow, their mean length amounting to about 2/3 of spore radius. Most specimens with open germination cleft. Contact area covered with fine granules, the rest of the spore surface covered with conic appendages with wide bases, tapering distally, very often elongated, threadlike and bent, densely arranged. Spores brown, cones brown-cherry.

Remarks. — Some specimens of A. brevia piculatus from Chełm have cones somewhat larger than those, described by Danzé et al. (1964), most of them, however, fall within limits of specific variability.

Occurrence. — Poland, Chełm I boring (samples 38, 39, 40, 56 and 148) — Westphalian A. France — Westphalian B-C.

Apiculatisporites brevispiculus (Schopf, 1938) Danzé, Levet-Carette & Loboziak, 1964

(Pl. IX, Fig. 10)

1964. Apiculatisporites brevispiculus (Schopf) Danzé, Levet-Carette & Loboziak; J. Danzé, J. Levet-Carette & S. Loboziak, Révision des Spores..., p. 17, Pl. 1, Figs. 6 a-b (here earlier synonymy included).

Material. — One well-preserved specimen and a few fragments. Dimensions (in μ):

	Z. Pb. L31
Spore diameter	1,500
Height of cones	15
Width of cones at the base	20-30
Number of cones on equator	about 50

Description. — Trilete megaspores, rounded or oval in outline. Y-figure small. Arcuate ridges slightly marked. Contact area covered with fine granules, very widely scattered. The rest of the spore surface covered with irregularly scattered cones. Spore tan-brown.

Occurrence. — Poland, Chełm I boring (samples 38, 236 and 425) — Namurian A and B Westphalian A. France — Westphalian B-C. U.S.A. (Illinois Coalfield) — Westphalian D. Apiculatisporites subspinus Danzé, Levet-Carette & Loboziak, 1964 (Pl. IX, Fig. 15)

1934. Type 14 Zerndt; J. Zerndt, Les mégaspores..., Pl. 14, Fig. 2, Pl. 17, Fig. 2.
1964. Apiculatisporites subspinus Danzé, Levet-Carette & Loboziak; J. Danzé, J. Levet-Carette & S. Loboziak, Révision des Spores..., p. 22, Pl. 3, Fig. 3a, b.

Material. — Two well-preserved specimens and 2 fragments. Dimensions (in μ):

	Z. Pb. L32	Z. Pb, L32
Spore diameter	1,625	1,750
Height of cones	70 - 100	50 - 100
Width of cones	30-80	3747
Diameter of granules on contact area	5-20	5
Number of cones on equator	45	40

Description. — Trilete megaspores, oval or subround in outline. Arms of Y-figure short (about 1/3 of the spore radius). Contact area covered with fine granules, the rest of the spore surface — with cones whose size decreases near contact area. Cones have a rounded base with a distally tapering spine. Spores tan-brown.

Remarks. — Megaspores of A. subspinus from Chełm differ from those described from France (Danzé et al., 1964) in a slightly smaller number of cones in equator.

Occurrence. — Poland, Upper Silesia — Namurian C, Chełm I boring (sample 38) — Westphalian A. France — Westphalian C.

> Apiculatisporites parviapiculatus (Zerndt) nov. comb. (Pl. I, Fig. 10)

1937. Triletes parviapiculatus Zerndt; J. Zerndt, Les mégaspores..., p. 17, Pl. 24, Figs. 1-4.

Material. — Thirteen well-preserved specimens and a few fragments. Dimensions (in μ):

	Z. Pb. E34	Z. Pb. 110	Z. Pb. E34
Spore diameter	425	500	637
Length of spines	8	7.5	7
Width of cones at the base	4	3	3
Thickness of exospore	26	25	13

Description. — Trilete megaspores; specimens flattened in proximal distal direction, subtriangular in outline. Arms of Y-figure straight, narrow, length equal to spore radius. Arcuate ridges running along spore margin, mostly invisible, hidden by sculpture. Distal surface of spores,

and sometimes contact area, are covered with small spiny processes, disposed near each other. Spores are dark tan-brown to black.

Remarks. — Megaspores of *A. parviapiculatus* from Chełm differ from those, described by Zerndt (1937*a*) in slightly larger dimensions. Zerndt had at his disposal only two specimens and, therefore, he determined the variability within narrow bounds.

Occurrence. — Poland, Upper Silesia — Lower Namurian; Chełm I boring (samples 572 and, rather questionably, 575) — Viséan.

Subturma Lagenotriletes Potonié & Kremp, 1954 emend. Bhardwaj, 1957 Infraturma Gulati Bhardwaj, 1957

Genus Lagenicula (Bennie & Kidston 1886) Potonié & Kremp, 1954 Type species: Lagenicula horrida Zerndt, 1934 Lagenicula crassiaculeata Zerndt, 1937

(Pl. II, Figs. 1---3)

1931. Typ 26, Zerndt; J. Zerndt, Megasporen..., p. 175, Pl. 9, Fig. 28.

- 1936. Typ 26, Zerndt; J. Nowak & J. Zerndt, Zur Tektonik..., p. 63, Pl. 1, Fig. 1.
- 1937. Lagenicula crassiaculeata Zerndt; J. Zerndt, Les mégaspores, p. 2, 13, Fig. 9.
- 1947. Triletes crassiaculeatus (Zerndt); A. T. Cross, Spore floras..., p. 304, Pl. 4, Figs. 107-110.
- 1953. T. crassiaculeatus (Zerndt); W. G. Chaloner, On the megaspores..., p. 274, Pl. 8-12.
- 1955. Lagenicula crassiaculeata Zerndt; R. Potonié & G. Kremp, Die Sporae..., p. 119, Text-fig. 35.

Material. — Three not very well-preserved specimens. Dimensions (in μ):

	Z. Pb. G21	Z. Pb. G6	Z. Pb. D39
Diameter of spore	1,250	_	
Length of spore	1,250	1,250	1,500
Length of spines	125-220	130—200	145 - 220
Width of spines at the base	25-45	25-40	25 - 50
Length of additional spines	12-13	12-15	12 - 15
Thickness of exospore	37.5	50	37.5

Description. — Trilete pear-shaped megaspores. On the proximal side, there is a large, strongly extended apical prominence. Lips mostly open. Contact area occupies about 1/2 of the proximal part of spore. Both lips and contact area smooth. The remaining part of spore covered with spines of two types. Large ones, extended at the base and pointed at the end, are slightly smaller and more densely arranged near contact area. Smaller, additional spines are distributed between them. Arcuate ridges are distinct. In the transmitted light spores are red-brown, in the reflected light — tan-brown in colour. Spines are — in the transmitted light — yellow-red. Remarks. — Megaspores of L. crassiaculeata from Chełm differ from those, described by Zerndt (1937a), in slightly smaller dimensions, but they fall within limits of the specific variability.

Occurrence. — Poland, Upper Silesia — Lower Namurian; Chełm I boring (sample 571b) — Viséan. Turkey — Namurian A and B; Scotland — Lower Carboniferous. U.S.A., States of Kentucky and Indiana — Lower Carboniferous.

Lagenicula subpilosa (Ibrahim, 1933) Potonié & Kremp, 1955 (Pl. II, Figs. 4-6)

- 1933. Setosisporites subpilosus Ibrahim; A. C. Ibrahim, Sporenformen..., p. 27, Pl. 5, Fig. 40.
- 1934. Lagenicula kidstoni Zerndt; J. Zerndt, Les mégaspores..., p. 26, Fig. 12, Pl. 28, Figs. 6—11; Pl. 29 (non Lagenicula kidstoni Zerndt 1937).
- 1946. Triletes subpilosus (Ibrahim) Dijkstra; S. J. Dijkstra, Eine monographische..., p. 46, Pl. 11, Figs. 116—128.
- 1952. T. subpilosus (Ibrahim) f. major Dijkstra; S. J. Dijkstra, Megaspores..., p. 13.
- 1954. T. subpilosus forma major Dijkstra; W. G. Chaloner, Mississippian megaspores..., p. 27, Pl. 1, Figs. 4-8.
- 1955. Lagenicula subpilosa (Ibrahim) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 119, Pl. 4, Fig. 21.
- 1955. L. subpilosa (Ibrahim) Potonié & Kremp; U. Horst, Die Sporae..., p. 170, Pl. 20, Figs. 24—27.
- 1956. Triletes subpilosus (Ibrahim) Dijkstra; M. C. Bonet & S. J. Dijkstra, Megaspores..., p. 258, Pl. 55, Fig. 40.
- 1956. cf. Triletes subpillosus (Ibrahim) Schopf, Wilson & Bentall f. major; S. J. Dijkstra, Lower Carboniferous..., p. 14, Pl. 9, Figs. 95–96; Pl. 10, Figs. 97–103.
- 1957, Triletes subpilosus (Wicher) Schopf, Wilson & Bentall forma major Dijkstra;
 S. J. Dijkstra, Ibid., p. 12, Pl. 11, Figs. 126, 127.
- 1958. Lagenicula subpilosa (Ibrahim) Potonié & Kremp; P. Piérart, Palynologie..., p. 12, Pl. 10, Fig. 16.
- 1959. Triletes subpilosus (Ibrahim) Schopf, Wilson & Bentall (sensu Dijkstra); M. R. Winslow, Upper Mississippian..., p. 17, Pl. 2, Figs. 1-5.
- 1959. T. subpilosus forma major Dijkstra, ex Chaloner, 1954; M. R. Winslow, Ibid. p. 18, Pl. 1, Figs. 1—9.
- 1962. Lagenicula subpilosa (Ibrahim) Potonié & Kremp; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 71, Pl. 8, Fig. 1.

Material. — About 100 well-preserved specimens.

Dimensions (in μ):

	Z . Pb. D3	Z. Pb. G40	Z. Pb. G11	Z. Pb. D15
Length of spore	650	750	1250	1500
Width of spore	450	625	1000	1125
Length of trilete rays	270	125	350	290
Height of apical prominence	350	250	425	390
Length of spines	2550	40-83	75—115	3763
Width of spines at the base	8-15	12 - 25	25-35	17 - 25
Distance between spines	15 - 50	ca, 25	25 - 38	30—75
Thickness of exospore	20	20	25	12,5

Description. — Trilete megaspores; specimens, flattened laterally, are pear-shaped or oval; those, flattened in proximal-distal direction, take a round outline. Mostly, they are flattened laterally. A pyramidal protuberance (or what is known as "gula") has a rounded apex. Both lips and contact area are covered with small knobs, particularly so near the base of lips. Arcuate ridges distinct. Distal surface of spores is covered with hair-like spines which are straight, bent, bluntly terminating or rounded, and less frequently, pointed at the ends. In some specimens, spines, adhering to arcuate lines, are shorter and more crowded. In the reflected light, spores are tan-brown, in the transmitted light — orange-brown.

Remarks. — Megaspores of L. subpilosa from Chełm differ from those, described by Ibrahim (1933), in longer spines, which is probably caused by a better preservation state. This form may be easily distinguished from other species of the genus Lagenicula. It is most similar to L. horrida Zerndt, from which it differs in smaller dimensions, thinner and shorter spines, thinner exospore and fine knobs, situated on contact area. Since the spines of L. subpilosa are relatively thin, they are often inclined at their base and adhering to the spore surface which makes them poorly visible against the background of the spore outline, particularly so in photographs. These spines are best visible when viewed in the transmitted light because of the contrast between a dark spore and yellow-red spines showing through.

Like Dijkstra (1946), I included the megaspores, described by Zerndt (1934) as L. kidstoni (not L. kidstoni Zerndt, 1937a) in the species L. subpilosa (Ibrahim) Potonié & Kremp. Erecting L. kidstoni has not been justified since two different groups of spores of the species L. subpilosa and L. horrida were assigned to it by Zerndt. Since L. subpilosa (Ibrahim 1933), Potonié & Kremp was described before L. kidstoni Zerndt, 1934, the former species is entitled to the priority.

The distinction of the forma major from the species L. subpilosa seems to be unjustified. According to Dijkstra (1952), the length of spores in L. subpilosa forma major varies within limits of 900 and $1,300 \mu$. The dimensions of spores, assigned to L. subpilosa, which mostly fluctuate between about 650 and $1,120 \mu$, easily fall within the limits, mentioned above. In the collections of some authors, there are specimens as small as 300μ . Winslow (1959) quotes the dimensions of spores of L. subpilosa as ranging from 550 to 1.270μ , and of L. subpilosa f. major — from 465 to $1,790 \mu$. Consequently, the dimensions of the former are contained within limits of the dimensions of the latter. In addition, Winslow states that the specimens of Triletes subpilosus from her collections have variants of all diameters and sizes of spines which, on the whole, decrease from the geologically older to younger beds. Except for the characters, referred to above, there are no differences which would allow one to distinguish separate forms within L. subpilosa. On the basis of this fact, I included megaspores of L. subpilosa f. major in the synonymy of the species L. subpilosa.

Occurrence. — Poland, Upper Silesia — Namurian A to Westphalian A; Chełm I boring (samples 38, 39, 40, 46, 148, 154, 192 and 399) — Namurian A to Westphalian A. Germany—Westphalian B and C. The Netherlands— Westphalian A to C. Turkey — Dinantian to Namurian C. Czechoslovakia — Namurian A. Belgium — Westphalian C. Scotland and Ireland — Namurian. U.S.S.R. (Moscow Coalfield and Donetz Coalfield with its western extension) — Viséan to Westphalian A. U.S.A. (Illinois Coalfield) — Namurian to Westphalian A and (States of Indiana and Michigan) — Dinantian.

> Lagenicula horrida Zerndt, 1934 (Pl. II, Figs. 1-4)

- 1934. Lagenicula horrida Zerndt; J. Zerndt, Les mégaspores..., p. 25, Pl. 28, Figs. 1-5
- 1946. Triletes horridus (Zerndt) Dijkstra; S. J. Dijkstra, Eine monographische..., p. 45, Pl. 12, Figs. 129—136 (here earlier synonymy included).
- 1950. Lagenicula horrida Zerndt; A. C. Arnold, Megaspores..., p. 81, Pl. 10.
- 1953. Triletes horridus from Lepidostrobus dubius; W. G. Chaloner, On the megaspores..., p. 268, Figs. 3-7.
- 1955. Lagenicula horrida Zerndt; U. Horst, Die Sporae..., p. 172, Pl. 20, Figs. 28-29.
- 1955. Lagenicula horrida Zerndt; R. Potonié & G. Kremp, Die Sporae..., p. 119, Pl. 4, Fig, 20.
- 1956. Triletes horridus (Zerndt) Schopf, Wilson & Bentall; S. J. Dijkstra, Lower Carboniferous..., p. 10, Pl. 3, Fig, 35.
- 1956. Triletes horridus; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 258, Pl. 52, Fig. 24; Pl. 55, Figs. 35—39.
- 1956. Lagenicula horrida Zerndt; R. Potonié, Synopsis..., p. 50.
- 1958. Lagenicula horrida Zerndt; P. Piérart, Palynologie..., p. 41, Pl. 11, Figs. 3-4.
- 1959. Triletes horridus (Zerndt) Schopf, Wilson & Bentall (sensu Dijkstra); M. R. Winslow, Upper Mississippian..., p. 20, Pl. 2, Figs. 6—12; Pl. 3, Fig. 1.
- 1962. Lagenicula horrida Zerndt; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 69, Pl. 7, Figs. 1 a-d.

Material. — More than 200 well-preserved specimens.

Dimensions (in μ):

_	Z. Pb. A1	Z. Pb. G4	Z. Pb. G3	Z. Pb. L33
Length of spores	600	1,070	1,200	1,325
Width of spores	525	1,000	875	1,250
Length of Y-ray3	175	300	250	362
Height of apical prominence	145	425	500	325
Length of spines	50-60	150-175	175 - 200	100-150
Width of spines at the base	12-14	17-30.5	37-50	37-40
Distance between spines	30	37-100	37 - 62	37-45
Diameter of globule at the spine apex	20		12 - 20	_
Thickness of exospore	19	25	37	83

Description. — Trilete megaspores; specimens, flattened in proximaldistal direction, are round or oval, those, flattened laterally, are pearshaped or also oval. Lips mostly open. Contact area occupies about 1/2 of the proximal part of spore and is mostly smooth or, sometimes, covered with irregularly scattered fine spines. Arcuate ridges distinct. The remaining part of the spore surface is covered with spines, extended at the base, mostly pointed, sometimes rounded, usually bent in a hooklike manner. Small, globular bodies are very often observed on the ends of spines. Additional spines occur seldom. In the transmitted light, spores are yellow-orange or red and, in the reflected light, tan-brown or black.

Remarks. - Megaspores of L. horrida from Chełm differ from those, described by Zerndt (1934), in a slightly broader extent of sizes. The length of spores described by Zerndt was $830 - 1,130 \mu$ whereas megaspores from Chełm are 600 to 1,350 μ long. Likewise, the length of spines in Zerndt's work, varies from 113 to 130 μ , and in megaspores, described in the present paper — from 50 to 175 μ . This is probably caused by the fact that the material from Chełm was marked by a greater abundance of spores of this species, and, consequently, by a greater extent of variability. This has been confirmed by data known from recent literature. In the structure of spines in L. horrida, there may be observed a certain detail which has not been noted by Zerndt, i.e. small globular bodies occurring on the ends of spines, to which attention was attracted by Arnold (1950). In observing the spines in the transmitted light, one may notice that these spines, towards their ends, become thinner and thinner but at the very tip, there occurs a strong swelling, resulting in the formation of a globular body which may be easily broken off.

Occurrence. — Poland, Upper Silesia — Dinantian to Westphalian A; Chełm I boring (samples 38, 39, 40, 56, 148, 154, 192, 263, 266, 425 and 472) — Namurian A to Westphalian A. Czechoslovakia — Namurian A and B. Germany — Westphalian B. Scottland — Dinantian to Namurian. Spain — Westphalian A. Belgium — Westphalian C. Turkey — Namurian A. U.S.A. (Illinois and Michigan Coalfields) — Namurian to Westphalian. U.S.S.R. (Donetz Coalfield and its western extension) — Viséan to Westphalian A.

Lagenicula horrida Zerndt hippocastaniformis n. var.

(Pl. III, Figs. 5, 6)

Holotypus: Specimen No. Z. Pb. G2; Pl. III, Fig. 6.
Stratum typicum: Namurian A — Westphalian A.
Locus typicus: Chełm I, sample 154.
Derivatio nominis: Lat. hippocastanicum = spore shaped like a chestnut.

Diagnosis. — Megaspores with a distinct apical prominence. Surface covered with densely arranged, rigid and slightly flattened spines.

Material. — Fifty well-preserved specimens and many fragments. Dimensions (in μ):

	Z. Pb. G8	Z. Pb. G2
Length of spore	1125	1325
Width of spore	750	975
Length of Y-rays	250	325
Height of apical prominence	325	350
Length of spines	187	200
Width of spines at the base	32	50
Distance between spines	35	75
Thickness of exospore	19	25

Description. — Trilete megaspores; specimens mostly flattened in lateral direction, are pearlike or elliptical in shape, those flattened in proximal-distal direction, are round or subround. Apical prominence distinct. Lips mostly open, arcuate ridges distinct. Contact area unornamented. The remaining part of the spore surface is covered with densely arranged, long spines, tapering towards the ends. Spines seem to be partly flattened, particularly so in their proximal parts and probably fairly rigid since they are very seldom bent and, often, broken off. In the transmitted light, spores are dark red-brown and, in the reflected light, dark brown or, sometimes, even black, which makes up a contrast with red-brown spines.

Remarks. --- Megaspores, assigned to L. horrida v. hippocastaniformis are, in their general structure and dimensions, similar to L. horrida. The difference consists in the fact that the megaspores of L. horrida var. hippocastaniformis are more often flattened laterally. In addition, despite the fact that their dimensions fall within limits of the specific variability of L. horrida whose length fluctuates from 600 to 1.350 μ , they are represented only by large specimens about 1,125 to 1,325 μ long (mean 1.120μ , as measured on 12 specimens). The most important difference is recorded in the manner of the development of spines which, in L. horrida, are considerably extended at the base, strongly pointed at the ends and mostly bent in a hooklike manner, whereas, in L. horrida var. hippocastaniformis, a mean length of spines is much larger (almost 100 μ), they are not so very sharp in the distal part, are very seldom bent, often broken off and mostly flattened. With regard to the structure of spines, this form is more similar to L. crassiaculeata, the difference consisting in smaller dimensions, flattening of spines and a different stratigraphic position.

Occurrence. — Poland, Chełm I boring (samples 38, 39, 40, 154 and 399) — Namurian A to Westphalian A.

Lagenicula brevispinosa n. sp. (Pl. IV, Figs. 1, 3 and 4; Pl. X, Fig. 9)

Holotypus: Specimen No. Z. Pb. H 24; Pl. IV, Fig. 3. Stratum typicum: Westphalian A.

Locus typicus: Chełm I, sample 154.

Derivatio nominis: Lat. brevis = short, spina = spine; after short spines covering the distal surface of spores.

Diagnosis. — Megaspores with contact area covered with fine knobs, and the rest of the spore surface — with short spines, wide at the base.

Material. — Eighteen well-preserved specimens.

Dimensions (in μ):

	Z. Pb. B13	Z. Pb. H24	Z. Pb. C37
Length of spores	687	875	1200
Width of spores	500	830	950
Length of Y-rays	132	250	250
Width of Y-rays	25	62,5	62
Height of apical prominence	156	325	300
Diameter of knobs on contact area .	8	10—13	8
Length of spines	3050	25 - 52	4056
Width of spines at the base	20-28	2530	28-37
Thickness of exospore	25	25	38

Description. — Trilete megaspores, those, flattened in proximal-distal direction, are round or oval in outline, those, flattened laterally, are pear-shaped with a distinct, pyramidal apical prominence. Triradiate ridges straight. There are many specimens with an open germination cleft. Arcuate ridges mostly invisible. Contact area, in contrast to the rest of the spore surface, covered with fine, densely distributed knobs, which are most closely crowded at the apex of pyramid. The remaining part of the spore surface is covered with irregularly scattered, relatively short spines, wide at the base. Spores tan-brown or black.

Remarks. — Megaspores of this species are most similar to those of Triletes acuminatus Dijkstra, 1957, from which they differ, however, in smaller dimensions and shorter spines which, in T. acuminatus, are 50 to 180 μ long. Megaspores of L. brevispinosa n. sp. have, on their contact area, characteristic knobs, never observed in other, related forms. Triletes acuminatus is marked by a very thick exospore (40—100 μ). In addition, both these forms differ from each other in their stratigraphic positions.

Occurrence. — Poland, Chełm I boring (samples 38, 39, 40? and 154) — Westphalian A.

Lagenicula baculata n. sp. (Pl. II, Figs. 7—11)

Holotypus: Specimen No. Z. Pb. G22; Pl. II, Fig. 9.

Stratum typicum: Westphalian A.

Locus typicus: Chelm I, sample 38.

Derivatio nominis: Lat. baculum = rod, after baculiform appendages covering the spore surface.

1950. Triletes rugosus (Loose) Schopf, Wilson & Bentall (sensu Dijkstra); M. R. Winslow, Upper Mississippian..., Pl. 3, Fig. 7 only.

Diagnosis. — Megaspores with a distinct apical prominence. Arcuate ridges visible. Exospore longitudinally and obliquely folded. Spore surface covered with fine, baculiform appendages.

Material. — More than 70 well-preserved specimens. Dimensions (in μ):

	Z. Pb. G22	Z. Pb. G23	Z. Pb. G12
Length of spore	750	850	1000
Width of spore	625	700	875
Length of Y-rays	150	200	225
Height of apical prominence	225	300	350
Length of rods	14-17.5	2—15	7—22
Width of rods	5-7.5	27	512
Distance between rods	30	25	24
Thickness of exospore	27	12,5	12

Description. — Trilete megaspores, pear-shaped round or oval, with a distinct apical prominence. Shape depending, to a considerable extent, of the state of preservation. Arcuate ridges, on well-preserved specimens, distinct. Lips very often open. Spore surface covered with minute knobs, baculae or spines. These sculptural elements are, in all specimens, rounded at the ends and there are no forms with strongly sharpened spines, baculiform appendages being the predominant elements. Exospore folded longitudinally or obliquely. In the transmitted light, spores are yelloworange or red-brown.

Remarks. — Spores of this species are most similar to those of Lagenoisporites rugosus (Loose), from which they differ only in the sculpture of exospore. Arnold (1950) was the first to notice — among the forms assigned to L. rugosus — specimens with fine baculae, 5 μ wide at the base, and 9—10 μ long, with rounded ends, scattered over the surface. On account of only occasional occurrence of such spores, Arnold considered the erection of a new species to be groundless. He mentioned, however, that the taxonomic characters of L. rugosus was not well-defined and that these were probably spores of more than one species.

Winslow (1959) presents the species *Lagenoisporites rugosus* within very broad limits and includes in it ornamented forms, estimating the length of the elements of sculpture at 5 to 20 and even 31 μ . In figures published in this author's work (1959), there are clearly visible, completely smooth forms, together with so distinctly ornamented one as that shown in his Pl. 3, Fig. 7. I assigned the last-named form to Lagenicula baculata n. sp. Since the specimens of both the species Lagenoisporites rugosus and Lagenicula baculata n. sp. are more or less equal in size and since many specimens with an open germination cleft are met with among the representatives of these two species, these forms do not seem to be immature specimens. In the material from Chełm they occur in abundance. The separation of completely smooth and lustrous forms from those with a distinct sculpture seems to be fully justified. A considerable variability may be observed among ornamented forms. Thus, there are forms with fine appendages whose height fluctuates within limits of 2 and 5 μ , as well as those with baculiform appendages mostly about 22 μ long. Perhaps, this is not a completely uniform systematic group of spores.

Occurrence. — Poland, Chełm I boring (samples 38, 39 and 40) — Westphalian A. U.S.A. (Illinois Coalfield) — Westphalian.

> Lagenicula clavata n. sp. (Pl. III, Figs. 8, 9; Pl. X, Fig. 5)

Holotypus: Specimen No. Z. Pb, I 12; Pl. III, Fig. 8. Stratum typicum: Westphalian A.

Locus typicus: Chełm I, sample 39.

Derivatio nominis: Lat. clava = club, after clavate appendages, covering the spore surface.

Diagnosis. — Megaspores oval. Arcuate ridges indistinct, apical prominence shaped like a pyramid. Spore surface, except for apical prominence, covered with clavate appendages.

Material. - More than 80 well-preserved specimens.

Dimensions (in μ):

	Z. Pb. G31	Z. Pb. I12	Z. Pb. B32
Length of spore	812	812	1100
Width of spore	750	700	825
Length of Y-rays	250	165	300
Height of apical prominence	300	250	400
Length of clavate appendages	16—20	16 - 25	16-40
Width of clavate appendages			
at the base	67	7—8	6-9
Width of clavate appendages			
near the apex	9-12	9—14	9-16
Diameter of small knobs	ca 4	ca 4	4-5
Thickness of exospore	15	20	20

Description. — Trilete megaspores; specimens, flattened in proximaldistal direction, are sacklike or oval, and those, flattened in lateral direction, subtriangular. Arcuate ridges mostly invisible, sometimes only slightly outlined, best visible in the transmitted light. Apical prominence very often strongly compressed, so that it is difficult to examine its shape. Well--preserved, not flattened specimens display an apical prominence with a very characteristic, pyramidal shape. Clavate appendages are irregul arly scattered all over the spore surface, except for apical prominence. These appendages are most closely concentrated near arcuate ridges and most widely scattered on the distal side of spores. Sometimes, in addition to clavate appendages, there also occur small, round knobs. The fact that exospore is, almost in all specimens, folded longitudinally and that mostly it forms one or two folds, running along the entire spore, constitutes a characteristic feature of this species. Sometimes, finer transverse or oblique foldings are also present. In the reflected light, spores are tan--brown and in the transmitted light — yellow-orange to red-cherry.

Remarks. — Megaspores of L. clavata n. sp. are most similar to those of L. baculata n. sp. from which they differ primarily in the shape of appendages, covering the spore surface. In L. clavata n. sp. they are longer and, at the apex, strongly swollen and forming clavae, whereas baculae and blunt spines are characteristic of the L. baculata spores. In addition, a mean thickness of the L. clavata exospore is slightly smaller.

Occurrence. — Poland, Chełm I boring (samples 38—40) — Westphalian A.

> Lagenicula maeandrica n. sp. (Pl. IV, Figs. 2 and 5)

Holotypus: Specimen No. Z. Pb. H 19; Pl. IV, Fig. 2. Stratum typicum: Viséan.

Locus typicus: Chełm I, sample 573.

Derivatio nominis: Lat. maeander = after intricate pattern of ornamentation of its spores.

Diagnosis. — Megaspores with trilete rays, in the form of thick rolls, strongly elevated at the apex. Arcuate ridges, consisting of several knobs, strongly crowded or even fused together. Contact area radially folded. The remaining part of the spore surface very strongly wrinkled in the form of thick roll-like elevations. The appearance of the whole strongly resembles the folds of the cerebral cortex.

Material. — Twenty five well-preserved specimens. Dimensions (in μ):

	Z . Pb. H8	Z.P.H19
Length of spore	450	1075
Width of spore	400	962
Length of Y-rays	212.5	250
Width of Y-rays	37.5	112
Height of Y-rays	62.5	125

237.5	375
200	425
37 - 100	75 - 200
37—40	50-87
12.5 - 16	25 - 75
1-2	3-5
50	75
	$237.5 \\ 200 \\ 37-100 \\ 37-40 \\ 12.5-16 \\ 1-2 \\ 50 \\ 1-2 \\ 1-2 \\ 50 \\ 1-2 \\ 1-2 \\ 50 \\ 1-2 $

Description. — Trilete megaspores; specimens, flattened in proximaldistal direction, are round, those, flattened in lateral direction — pearlike. Trilete rays developed in the form of thick ridges, slightly elevated at the apex. Contact area covered with radial folds and bounded with distinct arcuate ridges, consisting of several knobs, which very strongly crowded and very often fused together, to form a sort of an irregularly shaped roll. The rest of the spore surface is very strongly folded like the cerebral cortex. These are roll-like elevations, separated by depressions. Exospore very massive. Spores are dark tan-brown or black and with a lustrous surface.

Remarks. — Megaspores of Lagenicula maeandrica n. sp. are most similar to the spores of L. agnina Zerndt, 1937, from which they primarily differ in the lack of knobs, typical of the L. agnina. In addition, trilete rays in L. agnina are longer, much wider and thicker.

Megaspores of L. maeandrica n. sp. are somewhat similar to those of L. pseudoagnina, whose surface is covered with larger knobs than L. agnina, but they are distant from each other and very seldom fuse together. L. pseudoagnina is more similar to L. agnina than to L. maeandrica.

Occurrence. — Poland, Chełm I boring (samples 573, 575) — Viséan.

Genus Lagenoisporites Potonié & Kremp, 1954

Type species: Lagenoisporites rugosus (Loose) Potonié & Kremp, 1954 Lagenoisporites simplex var. levis (Zerndt, 1937) Potonié & Kremp, 1954 (Pl. V, Figs. 1-9; Pl. VI, Figs. 1-9)

- 1937. Lagenicula simplex var. levis Zerndt; J. Zerndt, Les mégaspores..., pp. 3, 15, Pl. 23, Figs. 1-5.
- 1938. Typ 36; J. Zerndt, Die Eignung..., p. 1713.
- 1955. Lagenoisporites (Lagenicula) simplex var. levis (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 121.
- 1957. Lagenicula simplex var. levis Zerndt; S. J. Dijkstra & P. Piérart, Lower Carboniferous..., p. 16, Pl. 16, Figs. 198-203; Pl. 19, Figs. 240-241.
- 1957. Triletes subsimplex Dijkstra; S. J. Dijkstra P. Piérart, Ibid., p. 10, Pl. 5, Figs. 79-87; Pl. 16, Figs. 198-203.
- 1962. Lagenicula simplex var. levis Zerndt; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 75, Pl. 10, Figs. 1a-b.

	Z. Pb. J1	Z. Pb. J2	Z. Pb. J3	Z. Pb. J4	Z . Pb. J5
Length of spores	275	400	900	1050	1125
Width of spores	250	380	730	1000	850
Length of Y-rays	87	125	325	325	175
Width of Y-rays	50	75	187	130	112
Height of Y-rays (in apical part)	45	50	18)	225	75
Width of arcuate ridges	12	25	50	75	62
Height of arcuate ridges	12	12.5	25	50	62
Diameter of knobs in the contact					
place of Y-rays and arcuate ridges .	37	-	150	112	125
Height of these knobs	25	-	62	75	75
Number of folds on contact area	-	1-2	2-3		
Thickness of exospore	37	62	50	50	62

Material. — More than 300 well-preserved specimens. Dimensions (in μ):

Description. — Trilete megaspores; specimens, flattened in lateral direction, are pear-shaped, and those, flattened in proximal-distal direction, are round or triangular. Specimens, flattened obliquely, irregular in shape, are also often met with. Triradiate ridges are strongly elevated and extended, shaped like rolls. Arcuate ridges are very distinctly roll-like. In the place, where triradiate ridges contact arcuate ridges, there occur characteristic knobs. In some forms, contact area is smooth and, in some others, covered with 3—7 folds, converging at the apex. The remaining part of the spore surface is smooth, except for the largest specimens, in which fine globules occur sometimes. In the reflected light, spores are dark-brown or black.

Remarks. — Megaspores of L. simplex var. levis from Chełm differ from those, described by Zerndt (1937a) in a more extensive range of dimensions, the length of the smallest specimens amounting to 275 μ (according to Zerndt's findings, 750 µ). Zerndt presumed that L. simplex and L. simplex var. levis virtually make up the same species of megaspores. However, no forms have been found with a size intermediary between these two forms. The samples from Chełm did not contain megaspores of this species larger than 1.125 u. Thus, it has been difficult to state what was the relationship of the L. simplex spores to the L. simplex var. levis megaspores. Presumably, however, the abundant occurrence of megaspores of L. simplex var. levis in these samples, with a simultaneous complete lack of spores, known as L. simplex, testifies to the fact that spores of L. simplex var. levis are not an abortive form of L. simplex, as it has been suggested by Dijkstra (1952), the more so as this variety includes many mature spores with an open germination cleft. Likewise, there are no sufficient reasons why the species T. subsimplex should be distinguished in such a form as that suggested by Dijkstra (1957). Two groups, which differ from each other only in the manner of the develop-

296

ment of the contact-field surfaces, may be distinguished in L. simplex var. levis. A series of forms may be arranged with completely smooth contact fields, and another, analogous series, in which distinct folds are visible on contact fields. In all descriptions of this variety, presented so far, the contact fields were determined as smooth and no folds were mentioned, despite the fact that they might be observed even in such early illustrations as those, figured by Zerndt (1937). Such folds are also visible in Dijkstra & Piérart (1957, Pl. 16, Figs. 199, 201, 202; Pl, 19, Fig. 240). Dijkstra (1957) was the first to mention the existence of such folds on contact fields in his description of the species T. subsimplex. If the existence of such folds might be considered a specific difference, T. subsimplex Dijkstra, 1957 could be considered an independent species, to which only the forms with folds on contact fields would be assigned.

Occurrence. — Poland, Upper Silesia — Namurian; Chełm I boring (samples 573 and 575) — Viséan. Turkey — Namurian B. U.S.S.R. (Moscow Coal Field) — Namurian, and (Donetz Coal Field and its western extension) — Viséan.

Lagenoisporites rugosus (Loose, 1932) Potonié & Kremp, 1954 (Pl. III, Figs. 7 and 10)

- 1946. Triletes rugosus (Loose) Dijkstra; S. J. Dijkstra, Eine monographische..., p. 47, Pl. 9, Figs. 83-99; Pl. 10, Figs. 100-103, 109, 110, 113?, 114?; Pl. 11, Fig. 115 (here earlier synonymy included.
- 1950. Lagenicula rugosa (Loose) Arnold; C. A. Arnold, Megaspores..., p. 82, Pl. 11, Pl. 12, Figs. 1—4.
- 1951. Triletes rugosus (Loose) Dijkstra; M. Kalibova, Megaspores..., p. 49. Pl. 2, Figs. 19, 22.
- 1954. Lagenoisporites rugosus (Loose) Potonié & Kremp; R. Potonié & G. Kremp. Die Gattungen..., p. 151.
- 1955. L. rugosus (Loose) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 122, Pl. 4, Fig. 22.
- 1956. Triletes rugosus (Loose) Schopf, Wilson & Bentall var. major Dijkstra; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 259, Pl. 53, Figs. 19—21; Pl. 54, Figs. 25—28.
- 1956. T. rugosus (Loose) Dijkstra; M. C. Bonet & S. J. Dijkstra, Ibid., p. 259, Pl. 53, Fig. 22; Pl. 54, Figs. 29—31.
- 1958. Lagenoisporites rugosus (Loose) Potonié & Kremp; P. Piérart, Palynologie..., p. 42, Pl. 3, Figs. 11 a, b; Pl. 10, Figs. 1—11.
- 1959. Triletes rugosus (Loose) Schopf, 1938 (sensu Dijkstra); M. R. Winslow, Upper Mississippian..., p. 22, Pl. 3, Figs. 4, 6, 8, 9?.
- 1965. Lagenoisporites rugosus (Loose) Potonié & Kremp; E. Spinner, Westphalian D megaspores..., p. 91, Pl. 14, Fig. 7.

Material. — More than 70 well-preserved specimens. Dimensions (in μ):

3 Acta Palaeontologica nr 3/67

	Z. Pb. A7	Z. Pb. G14	Z. Pb. B25
Length of spore	500	850	1,050
Width of spore	400	750	887
Length of Y-rays	150	225	287
Height of apical prominence	175	250	300
Thickness of exospore	10	27	16

Description. — Trilete megaspores; specimens, flattened laterally, are more or less oval, and those, flattened in proximal-distal direction, round or oval. Apical prominence distinct. Arcuate ridges, in well-preserved specimens, distinctly marked. Contact area occupies more or less $1/_2$ of the spore radius. Spore surface smooth or slightly punctate, lustrous. Spores thin and very strongly folded or secondarily compressed in different directions and hence their considerably varying general outline. In the transmitted light, spores are yellow or red-brown.

Remarks. - Spores, described as Triletes rugosus, make up a considerably differentiated group. Thus far, completely smooth forms were grouped together with distinctly ornamented ones, which does not seem to be correct. In the present paper, only forms with a smooth, lustrous or only slightly punctate surface of exospores are assigned to Lagenoisporites rugosus (Loose) and ornamented spores — to new species of the genus Lagenicula. As results from Loose's illustrations (1932, Pl. 20, Fig. 57), the form he described as a holotype of the species Sporonites rugosus is not ornamented. Likewise, according to Wicher (1934), these spores do not display any sculpture at all. All spores of this type (Type 25) are described by Zerndt (1931, 1937a) as forms with a thin, smooth, lustrous exospore and devoid of appendages. This is precisely the reason why I assigned to this type the spores, identified by Schopf (1938) as T. translucens whose surface is devoid of sculpture. In the same work, Schopf described another form which, according to him, differs only in a slightly thicker and less translucent exospore and whose surface is rough. However, no distinct elements of sculpture are mentioned by this author. In this connection, the assignment of this group of spores to a separate species does not seem necessary. In addition to smooth spores, certain forms with fine sculptural elements have been observed by some later authors (Arnold, 1950; Winslow, 1959) who, because of an occasional occurrence of these forms, did not erect new species.

Occurrence. — Poland, Upper Silesia — Namurian and Westphalian A and B; Chełm I boring (samples 38—40 and 56) — Westphalian A. Czechoslovakia — Westphalian B to D. The Netherlands-Westphalian A to C. Germany-Westphalian B and C. France-Westphalian C. and D. Spain — Westphalian A. Belgium — Westphalian C. U.S.A. (Illinois Coal Field) — Westphalian. Lagenoisporites vastus (Dijkstra, 1957) nov. comb. (Pl. III, Figs. 11 and 12)

1957. Triletes vastus Dijkstra; S. J. Dijkstra & P. Piérart, Lower Carboniferous..., p. 13, Pl. 11, Figs. 133-138.

Material. — Two well-preserved specimens.

Dimensions (in μ):

	Z. Pb. J22	Z. Pb. J21
Length of spore	450	750
Width of spore	425	662
Length of Y-rays	100	187
Width of Y-rays	50	70
Height of Y-rays	60	80
Width of arcuate ridges	—	37
Height of arcuate ridges		25
Diameter of knobs near		
arcuate ridges	—	150
Height of knobs near arcuate ridges	_	100
Thickness of exospore	38	43

Description. — Trilete megaspores; specimens, flattened in proximaldistal direction, are triangular in outline. Trilete rays roll-like, in particular on smaller specimens. Contact are bounded by a large swelling of exospore. A ligulate swelling is situated in the place in which arcuate ridges contact Y-rays. Spore surface smooth. Spores are tan-brown or black.

Remarks. — Megaspores of Lagenoisporites vastus (Dijkstra) n. comb. differ from those described by Dijkstra (1957) only in slightly thicker Y-ridges. They are most similar to the spores of L. simplex var. levis but for the fact that Dijkstra happened to find them even in tetrads, where all spores were equal in size, they could not be considered an abortive form of this species.

Occurrence. — Poland, Chełm I boring (sample 573) — Viséan. U.S.S.R. (Moscow Coal Field) — Lower Carboniferous.

Lagenoisporites cf. nudus (Nowak & Zerndt, 1936) Potonié & Kremp, 1955 (Pl. IV, Fig. 6)

1955. Lagenoisporites nudus (Nowak & Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 121.

^{1936.} Type 43, Lagenicula nuda Nowak & Zerndt; J. Nowak & J. Zerndt, Zur Tektonik..., p. 60, Pl. 1, Fig. 6.
Material. — Two well-preserved specimens. Dimensions (in μ):

	Z. Pb. II	Z. Pb. E26
Length of spore	500	850
Width of spore	425	750
Length of Y-rays	180	188
Height of Y-rays	60	62
Height of apical prominence	200	250
Width of arcuate ridges	37	37,5
Thickness of exospore	37,5	40

Description. — Trilete megaspores; specimens, laterally flattened, are pear-shaped. Large apical prominence surrounded by strongly outlined and thickened arcuate ridges. Trilete rays straight. Spore surface smooth or fine granular. Spores dark tan-brown.

Remarks. — Megaspores of L. cf. nudus from Chełm differ from those, described by Nowak & Zerndt (1936), only in somewhat smaller dimensions. Due to a small number of specimens, there was not a possibility to trace accurately the variability within this group of spores.

Occurrence. — Poland, Upper Silesia — Lower Namurian; Chełm I boring (sample 573) — Viséan.

> Lagenoisporites sp. 1 (Pl. IV, Fig. 10)

Material. — Two well-preserved specimens. Dimensions (in μ):

Z. Pb. C38	Z. Pb. I 9
Length of spore 1000	1075
Width of spore 700	650
Length of Y-rays 150	175
Height of apical prominence 250	300
Thickness of exospore	50

Description. — Trilete megaspores; specimens, laterally flattened, are elliptical in outline. Y-rays strongly elevated and forming apical prominence pyramidal in shape. Arcuate ridges relatively wide (50 μ). Near arcuate ridges, exospore radially folded. A double fold runs along the entire spore. Spore surface smooth. Spores tan-brown.

Remarks. — These spores are most similar to megaspores of *L. simplex* var. *levis* in which, however, trilete rays are roll-like, whereas in the forms, described above, they are flat and apical prominence occupies the entire contact area.

Occurrence. — Poland, Chełm I boring (samples 154 and 571b) — Viséan and Westphalian A.

Lagenoisporites sp. 2 (Pl. IV, Fig. 7)

Material. — One specimen.

Dimensions (in μ):

	Z. Pb. G47
Length of spore	 . 700
Width of spore	 . 575
Length of Y-rays	 . 125
Thickness of exospore	 . 12

Description. — Trilete megaspore; specimen, longitudinally flattened, sack-like in shape. Apical prominence with height almost equal to length of Y-ray. Spore surface with one longitudinal and one transverse fold, without sculpture, with fine knobs, occurring here and there as if a remnant of broken off spines. Spore dark tan-brown.

Occurrence. - Poland, Chełm I boring (sample 573) - Viséan.

Lagenoisporites? sp. 3 (Pl. IV, Fig. 11)

Material. — Four poorly preserved specimens. Dimensions (in μ):

	Z. Pb. A33	Z. Pb. H17
Length of spore	. 950	1225
Width of spore	412	550
Length of Y-rays	200	225
Height of apical prominence	250	250
Thickness of exospore	. 5	7,5

ı.

Description. — Trilete megaspores; specimens longitudinally flattened, oval in outline. Trilete ridges, strongly elevated, forming trilete apical prominence. Arcuate ridges invisible. Exospore strongly folded and longitudinally rolled up which makes difficult the determination of a real shape of spores. Spore surface smooth, lustrous, dark-brown or black.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A.

Lagenoisporites? sp. 4 (Pl. IV, Fig. 9)

Material. — One specimen.

Dimensions (in μ):

	Z. Pb. G26
Length of spore	1150
Width of spore	650
Length of Y-rays	100
Height of apical prominence	200
Thickness of exospore	60

Description. — Trilete megaspore; specimen longitudinally flattened, oval in outline. Trilete apical prominence shaped like a truncate pyramid. Arcuate ridges marked in the form of a depression surrounding apical prominence. Exospore smooth, longitudinally folded. The entire spore was probably covered with a membraneous areola, whose remains occur on the surface of exospore and along the entire spore margin, apical prominence included, there is visible a membraneous stripe. Spore black.

Remarks. — This spore, despite its general structure of the Lagenoisporites type, may be just an abortive form of some species of the genus Cystosporites.

Occurrence. — Poland, Chełm I boring (sample 154) — Westphalian A.

Genus Setosisporites (Ibrahim 1933) Potonié & Kremp, 1954 Type species: Setosisporites hirsutus (Loose) Ibrahim 1933 Setosisporites praetextus (Zerndt, 1934) Potonié & Kremp, 1955 (Pl. VII, Figs. 1 and 2)

- 1946. Triletes praetextus Zerndt; S. J. Dijkstra, Eine monographische..., p. 43, Pl. 7, Figs. 66, 67; Pl. 8, Figs. 68, 69 (here earlier synonymy included).
- 1947. T. praetextus Zerndt; A. T. Cross, Spore floras..., p. 301, Fig. 20.
- 1947. T. praetextus var. I Cross; A. T. Cross, Ibid., p. 302, Figs. 91-94.
- 1955. Setosisporites praetextus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die sporae..., p. 124, Pl. 5, Figs. 30-32.
- 1955. S. praetextus (Zerndt) Potonié & Kremp; U. Horst, Die Sporae..., p. 174, Pl. 19, Figs. 19, 20.
- 1955. Triletes praetextus Zerndt; S. J. Dijkstra, Megasporas..., p. 334, Pl. 41, Fig. 28.
- 1956. T. praetextus Zerndt, forma minor Dijkstra; S. J. Dijkstra, Lower Carboniferous..., p. 14, Pl. 7, Fig. 77.
- 1956. T. praetextus Zerndt; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 257, Pl. 52, Figs. 13, 14.
- 1957. Setosisporites praetextus (Zerndt) Potonié & Kremp; D. C. Bhardwaj, The palynological..., p. 93, Pl. 25, Figs. 11, 12.
- 1958. S. praetextus (Zerndt) Potonié & Kremp; P. Piérart, Palynologie..., p. 44, Pl. 3, Figs. 1-4.
- 1959. Triletes praetextus Zerndt; M. R. Winslow, Upper Mississippian..., p. 46, Pl. 5, Figs. 9, 10.
- 1962. Megaligulati praetextus (Zerndt) Ishchenko & Semenova; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 64, Pl. 4, Fig. 4.

	Z. Pb. C18	Z. Pb. H39	Z. Pb. L35
Diameter of spore	550	1275	1425
Length of Y-rays	250	450	600
Width of apical prominence	100	250	300
Height of apical prominence	75	225	250
Length of equatorial appendages	75	250	_
Thickness of equatorial appendages	20	37]
Thickness of exospore	35	50	_

Material. — Twenty well-preserved specimens. Dimensions (in μ):

Description. — Trilete megaspores; specimens, flattened in proximaldistal direction, are round, those, flattened in lateral direction, subtriangular in shape. Y-rays roll-like with their width gradually increasing towards the apex of spore, where a small apical prominence is formed. Contact area smooth, devoid of sculpture. A few rows of spinal appendages, which are simple or 2—3 times branched, are disposed on the outside of arcuate ridges. Distal surface of spores smooth. Spores are tan-brown. Elements of sculpture strongly lustrous, under reflected light red-brown and under transmitted light red-orange.

Remarks. — No diameters of the S. praetextus (Zerndt) spores have been given by Zerndt. According to recent descriptions of megaspores of this species, their diameters vary between 800 and 1,800 μ . In the material from Chełm they are slightly smaller (500 to 1.425 μ), mostly about 1,200 μ in diameter which is in conformity with data, presented by other authors. Spores of this species, 700 to 1,000 μ in diameter, have been described by Dijkstra (1952a) as S. praetextus f. minor which does not seem correct. At Chełm, one may also find forms 550 μ in diameter, but they are not numerous. All of them are identical in structure, whose particular elements increase their size in proportion to the increase in the size of spores. Spores of all dimensions have been found in a single sample and, therefore, their division into small and large ones is illgrounded, the more so as these forms are very characteristic and easy to distinguish between them.

Occurrence. — Poland, Upper Silesia — Namurian A to Westphalian B; Chełm I boring (samples 38, 39, 56, 230, 239, 399 and 527) — Viséan to Westphalian A. Czechoslovakia — Namurian A to Westphalian B and C. Germany — Westphalian C. France — Westphalian A to C. The Netherlands — Westphalian B and C. Scotland and Ireland — Lower Carboniferous. Spain — Westphalian A. Turkey — Namurian A to Westphalian B. U.S.A. (Illinois Coal Field, as well as the States of Virginia and Kentucky) — Namurian to Westphalian. U.S.S.R. (Donetz Coal Field and its western extension) — Westphalian A. Setosisporites hirsutus (Loose, 1932) Ibrahim, 1933

(Pl. V, Figs. 11, 12)

- 1946. Triletes hirsutus (Loose), Type 13 Zerndt; S. J. Dijkstra, Eine monographische..., p. 37, Pl. 7, Figs. 62-65; Pl. 8, Figs. 79-82 (here earlier synonymy included).
- 1947. T. tenuispinosus Zerndt; A. T. Cross, Spore floras..., p. 299.
- 1952. Type 13 = Triletes hirsutus (Loose); S. J. Dijkstra, The stratigraphical..., p. 163.
- 1954. Setosisporites hirsutus (Loose) Ibrahim; R. Potonié & G. Kremp, Die Gattungen..., p. 152, Pl. 10, Fig. 43; Pl. 20, Fig. 14.
- 1955. S. hirsutus (Loose) Ibrahim; R. Potonié & G. Kremp, Die Sporae..., p. 123, Fig. 37; Pl. 4, Figs. 23-29.
- 1955. Triletes hirsutus (Loose) Schopf, Wilson & Bentall; S. J. Dijkstra, Megasporas..., p. 300, Pl. 36, Figs. 11, 12.
- 1956. T. hirsutus (Loose) Schopf, Wilson & Bentall; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 256, Pl. 52, Figs. 17, 18.
- 1958. Setosisporites hirsutus (Loose) Ibrahim; P. Piérart, Palynologie..., p. 43, Pl. 3, Figs. 10, a-c.
- 1958. S. hirsutus (Loose) Ibrahim; W. G. Chaloner, A. Carboniferous..., Pl. 44, Fig. 11.
- 1959. Triletes cf. Triletes hirsutus (Loose) Schopf, Wilson & Bentall; M. R. Winslow, Upper Mississippian..., p. 45, Pl. 5, Fig. 7.
- 1963. Setosisporites hirsutus (Loose) Ibrahim; P. Piérart, Synopsis..., p. 236, Pl. 3, Fig. 14.

Material. — Ten well-preserved specimens.

Dimensions (in μ):

	Z. Pb. B38	Z. Pb.H36	Z. Pb. H30
Diameter of spore	500 25	600 25	650 30
Height of apical prominence Length of appendages covering	75	125	125
spore surface	60-63	62-90	62-100
Width of appendages at the base	12	12,5	12,5
Thickness of exospore	28	37	37,5

Description. — Trilete megaspores, round in proximal-distal outline and oval in lateral outline. Trilete rays ridgelike, near the apex strongly elevated and forming apical prominence pyramidal in shape. Contact area devoid of sculpture, sometimes slightly folded. The remaining part of the spore surface covered with numerous, densely distributed appendages which are either simple or bifurcated at apex. Spores are gray-brown, appendages brown-red. Elements of sculpture highly lustrous.

Affinities. — Selaginellites canonbiensis Chaloner, 1958 has megaspores very similar to those of Setosisporites hirsutus.

Occurrence. — Poland, Upper Silesia — Namurian C to Westphalian C; Chełm I boring (samples 38, 40, 56, 154, 239 and 263) — Namurian B to Westphalian A. Germany — Westphalian B and C. France — West-

phalian A to C. The Netherlands — Westphalian A to D. Turkey — Westphalian A to C. Belgium — Westphalian C. Spain — Westphalian A. U.S.A. (Illinois Coal Field and the States of Virginia and Kentucky) — Westphalian A.

Setosisporites hirsutus var. brevispinosa f. I (Zerndt, 1937) Potonié & Kremp, 1955 (Pl. IX, Fig. 7)

- 1937. Type 13A, Triletes tenuispinosus var. brevispinosa Zerndt; J. Zerndt, Les mégaspores..., p. 6, Text-fig. 4; Pl. 3, Figs. 1, 2, 5-7.
- 1946. Triletes hirsutus var. brevispinosa Zerndt; S. J. Dijkstra, Eine monographische..., p. 38, Pl. 7, Figs. 61 a-b; Pl. 15, Figs. 167-168.
- 1952. T. hirsutus var. brevispinosa Zerndt forma 1; S. J. Dijkstra, The stratigraphical..., p. 163, Pl. 7, Fig. 7.
- 1955. Setosisporites (Triletes) hirsutus var. brevispinosa (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 123.
- 1955. S. hirsutus var. brevispinosa (Zerndt) Potonié & Kremp; U. Horst, Die Sporae..., p. 174, Pl. 19, Figs. 17, 18.
- 1956. Triletes hirsutus (Loose) Schopf, Wilson & Bentall var. brevispinosa forma 1;
 S. J. Dijkstra, Lower Carboniferous..., p. 13, Pl. 7, Figs. 67-71.
- 1957. T. hirsutus (Loose) Schopf, Wilson & Bentall var. brevispinosa forma 1 Zerndt;
 S. J. Dijkstra & P. Piérart. Lower Carboniferous..., p. 8, Pls. 31-33; Pl. 19.
 Figs. 228-233.

Material. — One well-preserved specimen.

Dimensions (in μ):

	Z. Pb. 121
Diameter of spore	500
Height of Y-rays	25
Height of apical prominence	50
Length of spines	6
Thickness of exospore	12

Description. — Trilete megaspore, round in outline. Trilete rays ridgelike, their length reaching 2/3 of the spore radius. Contact area radially folded. The remaining part of the spore surface covered with fine spines. Spore tan-brown.

Remarks. — Megaspores of S. hirsutus var. brevispinosa (Zerndt) from Chełm differs from the holotype in a slightly smaller apical prominence.

Occurrence. — Poland, Upper Silesia — Namurian A and B; Chełm I boring (sample 573) — Viséan. Czechosłovakia — Namurian A. The Netherlands — Namurian B. Scotland and Ireland — Namurian. U.S.S.R. (Moscow Coal Field) — Lower Carboniferous. Turkey — Namurian A and B.

Setosisporites hirsutus var. brevispinosa f. II (Zerndt) Potonié & Kremp, 1955

(Pl. IX, Fig. 11)

- 1937. Type 13A, Triletes tenuispinosus var. brevispinosa II; J. Zerndt, Les mégaspores..., p. 6, Text-fig. 5; Pl. 3, Figs. 3-4.
- 1952. Triletes hirsutus var. brevispinosa Zerndt forma II; S. J. Dijkstra, The stratigraphical..., p. 163, Pl. 7, Fig. 8.
- 1955. Setosisporites hirsutus var. brevispinosa (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 123.

Material. — One well-preserved specimen.

Dimensions (in μ):

	Z. Pb. 124
Diameter of spore	500
Length of Y-rays	175
Height of Y-rays	25
Height of apical prominence	100
Length of appendages	37
Thickness of exospore	20

Description. — Trilete megaspore, round in outline. Y-rays ridgelike, near apex strongly elevated. Contact area slightly folded, the remaining part of spore surface covered with spined appendages closely adhering to each other. Spore are dark tan-brown.

Occurrence. — Poland, Upper Silesia — Lower Carboniferous; Chełm I boring (sample 573) — Viséan. Turkey — Namurian C.

> Setosisporites dybovae n. sp. (Pl. VII, Figs. 4, 5)

Holotypus: Specimen No. Z. Pb. H38; Pl. VII, Fig. 5.

Stratum typicum: Viséan, Namurian A.

Locus typicus: Chełm I, sample 399.

Derivatio nominis: dybovae — in honour of Doc. Dr. S. Dybová-Jachowicz. investigator of the Carboniferous microflora.

Diagnosis. — Trilete megaspores with ridgelike trilete rays, which are uniform in width and height over the entire length. Apical prominence occupies about 1/4 of the trilete ray. Contact area and distal surface smooth. A row of either simple, or several times branched appendages is situated on the outside of arcuate ridges.

Material. — Thirty five well-preserved specimens.

Dimensions (in μ):

-				
Diameter of spore	500	775	875	937
Length of Y-rays	210	325	350	375
Width of Y-rays	12	25	30	50
Height of apical prominence	40	50	100	100
Length of equatorial appendages .	60	75	100	100
Width of equatorial appendages .	12	20	25	30
Thickness of exospore	25	38	25	30

Z. Pb. Di7 Z. Pb. H38 Z. Pb. H33 Z. Pb. D18

Description. — Trilete megaspores; specimens, compressed in proximal-distal direction, are round or subtriangular in outline. Trilete rays ridgelike, slightly and regularly undulated. At the spore apex, trilete ridges form a small, conical prominence. Contact area smooth, mostly delimited by very distinct arcuate ridges. Simple or — more often several times branched appendages are situated along arcuate ridges on their outer side. Sometimes, adjacent appendages are fairly closely connected with each other. They are easily destroyed and, after breaking off, leave traces in the form of fine knobs. Distal surface of spores smooth. Spores tan-brown or black.

Remarks. — Megaspores of this species are most similar to spores of S. praetextus (Zerndt), but they have much shorter equatorial appendages, smaller apical prominence and differently developed Y-rays. S. praetextus has trilete rays which are distinctly roll-like and more and more contracting as the distance increases from apex, whereas in S. dybovae n. sp. trilete rays are ridgelike, slightly undulated and almost uniform in width and height over the entire length. The width of apical prominence in S. praetextus equals about 1/2 of the length of the trilete ray and, in S. dybovae n. sp., this width makes up 1/4 of Y-ray radius. The length of equatorial appendages in S. dybovae n. sp. — in contradistinction to S. praetextus — does not exceed 100 μ .

Occurrence. — Poland, Chełm I boring (samples 399 and 527) — Viséan to Namurian A.

Setosisporites reticulatus n. sp. (Pl. V, Fig. 10; Pl. X, Fig. 8)

Holotypus: Specimen No. Z. Pb. H7; Pl. V, Fig. 10. Stratum typicum: Viséan. Locus typicus: Chełm I, sample 571b.

Derivatio nominis: Lat. reticulum = network, after a characteristically reticulate distal surface of spore.

Diagnosis. — Megaspores with contact area radially folded. The rest of the spore surface is covered with a flat reticulum with round and ovate lumina. The entire surface of reticulum is covered with fine knobs.

In the place, where reticulum contacts arcuate ridges, a flange is formed with spined appendages occurring on its margin.

Material. — Ten well-preserved specimens. Dimensions (in μ):

	Z. Pb. D38	Z. Pb. H7	Z. Pb. L37
Diameter of spore Length of Y-rays Height of apical prominence Width of equatorial flange	350 100 50	400 150 75 37,5	587 200 100 75
Length of spines on the margin of flange	 25	7—16 25	10—16.5 32
Thickness of reticulum	covering	Z. Pb. K12	

spore	3 - 4
Diameter of lumina of reticulum	7 - 41
Height of knobs on the surface of	
reticulum	3.3-7.7

Description. — Trilete megaspores; specimens, compressed in proximal-distal direction, are round in shape. Length of trilete rays equalling about 3/4 of the length of spore radius. Trilete rays roll-like, at the apex forming a typical apical prominence. Contact area smooth or covered with fine knobs, slightly folded. The remaining part of the spore surface covered with a flat reticulum closely adhering to exospore. Lumina of reticulum round or oval, considerably varying in size. The entire reticulum covered with fine, slightly contracting, knobs. A flat flange with spined appendages on its margin is formed in the place, where reticulum contacts arcuate ridges. In well-preserved specimens, reticulum closely adheres to exospore and is poorely visible but, in slightly damaged specimen, it is detached from the rest of spore. It may be gently torn off and examined under transmitted light. Spores are tan-brown-black and reticulum brown-cherry, under transmitted light yellow-orange.

Remarks. — Setosisporites reticulatus n. sp. is most similar to S. globosus (Arnold) var. B Winslow (1959). The difference consists in slightly smaller middle dimensions of spores, and, primarily in a different sculpture of the distal surface. True enough, Winslow mentions a certain irregularity of the reticulum, but she also states that this reticulum consists of beadlike appendages whose length amounts to 15—57 μ . Whereas the reticulum of S. reticulatus is uniform and knobs represent only an additional body on its surface. Moreover, knobs are relatively fine, their height does not exceed 7.8 μ and, therefore, they do not reach even a lower limit of size of the S. globosus var. B spines. The similarity con-

sists in the presence — in both forms — of a flange which occurs in the place, where arcuate ridges contact the remaining parts of spore.

In their general appearance, megaspores of S. reticulatus resemble spores, described by Zerndt (1937) as T. tenuispinosus var. brevispinosa f. II. In both cases, contact area is folded and densely distributed spined appendages occur on the spore circumference. The difference consists in the fact that appendages in Zerndt's spores are much longer and there is no reticulum on the distal surface.

Occurrence. - Poland, Chełm I boring (sample 571b) - Viséan.

Setosisporites? sp. 1 (Pl. VII, Fig. 6)

Material. — One well-preserved specimen.

Dimensions (in μ):

	Z. Pb.	H32
Length of spore	625	
Width of spore	500	
Length of Y-rays	250	
Height of Y-rays	30	
Height of apical prominence	62	
Width of apical prominence at the		
base	87	
Thickness of exospore	37	

Description. — Trilete megaspore, oval in outline. Trilete rays ridgelike. Arcuate ridges distinct. Spore smooth, tan-brown.

Remarks. — Megaspore of Setosisporites? sp. resembles, in its general shape and dimensions, spores of the genus Setosisporites. In the representatives of this genus, the elements of sculpture are often very loosely connected with exospore and, after their destruction, sometimes, no traces are left on the spore surface. In all probability, therefore, Setosisporites? sp. is a spore of the genus Setosisporites whose sculpture was completely destroyed. With regard to its dimensions, this specimen is most similar to the species S. dybovae n. sp., except for the fact that, in this species, the broken off spines usually leave traces in the form of small knobs.

Occurrence. — Poland, Chełm I boring (sample 399) — Namurian A.

cf. Setosisporites sp. 2 (Pl. VII, Fig. 7)

Material. — One well-preserved specimen.

Dimensions (in μ):

	Z. Pb. G34
Diameter of spore	338
Length of Y-rays	125
Height of apical prominence	67.5
Width of apical prominence at the	
base	125
Height of knobs	2.5-12
Width of knobs	2.0—10
Thickness of exospore	20

Description. — Trilete magaspore, subtriangular in equatorial outline. Trilete rays ridge-like, half-way their length extended, elevated and forming a trilete apical prominence. Contact area smooth, lustrous. Arcuate ridges distinct. The remaining part of spore surface covered with fine knobs. Spore almost black.

Remarks. — The megaspore described above, is of an intermediary character between the genera Setosisporites and Lagenicula, which differ from each other in the development of apical prominence (what is known as "gula"), which is most strongly developed in Lagenicula in which Y-rays are strongly elevated over their entire length, whereas, in Setosisporites, only a small part of Y-rays forms a small elevation at the very apex. In the megaspore of cf. Setosisporites sp. 2, this elevation of trilete ridges does not occur over the entire length, but it occupies a considerable part of it and is trilete as in the genus Lagenicula. Since in the Chełm I boring, only one specimen has been found, it was impossible to determine its systematic position.

Occurrence. - Poland, Chełm I boring (sample 575) - Viséan.

Turma Zonales (Bennie & Kidston, 1886) Potonié & Kremp, 1956
Subturma Auritotriletes Potonié & Kremp, 1954
Infraturma Auriculati (Schopf, 1938) Potonié & Kremp, 1954
Genus Valvisisporites (Ibrahim, 1933) Potonié & Kremp, 1954
Type species: Valvisisporites trilobus Ibrahim, 1933
Valvisisporites auritus (Zerndt, 1930) Potonié & Kremp, 1956
(Pl. IV, Fig. 8)

- 1946. Triletes auritus Zerndt; S. J. Dijkstra, Eine monographische..., p. 51, Pl. 3, Figs. 16, 17 a-b; Pl. 4, Fig. 25; Pl. 16, Fig. 178 (here earlier synonymy included).
- 1947. T. auritus Zerndt; A. T. Cross, Spore floras..., p. 383, Pl. 1, Figs. 7—9, 13, 14, 15?; Pl. 4, Figs. 151—152.
- 1950. T. auritus Zerndt; C. Arnold, Megaspores..., p. 76, Pl. 6, Figs. 3-6.
- 1951. T. auritus Zerndt; M. Kalibova, Megaspores..., p. 21, Pl. 3, Figs. 4-13, 17-27.
- 1955. Valvisisporites auritus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., Pl. 6, Figs. 38, 40, 41, 43

- 1956. Triletes auritus Zerndt; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 256, Pl. 49, Figs. 47, 50.
- 1957. Valvisisporites auritus (Zerndt) Bhardwaj; D. C. Bhardwaj, The palynological..., p. 98, Pl. 26, Figs. 12, 13.
- 1957. V. westphalensis Bhardwaj; D. C. Bhardwaj, The spore flora..., p. 124, Pl. 25, Figs. 71, 72.
- 1958. V. westphalensis Bhardwej; P. Piérart, Palynologie..., p. 46, Pl. 2, Fig. 15; Pl 14, Fig. 4.
- 1958. V. cf. flavus (Stach & Zerndt) Potonié & Kremp; P. Piérart, Ibid., p. 52, Pl. 2, Figs. 12-14.
- 1958. V. augustae (Loose) Potonié & Kremp; P. Piérart, Ibid., p. 51, Pl. 2, Figs. 5-11.
- 1959. Triletes auritus Zerndt (sensu Potonié & Kremp); M. R. Winslow, Upper Mississippian..., p. 30, Pl. 7, Figs. 7-11.
- 1962. Megastenozonales auritus (Zerndt) Ishchenko & Semenova; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 76, Pl. 11, Fig. 1.
- 1962. M. notabilis Ishchenko & Semenova; A. M. Ishchenko & E. V. Semenova, Ibid., p. 78, Pl. 11, Fig. 2.
- 1965. Valvisisporites auritus (Zerndt) Potonié & Kremp; (sensu Bhardwaj, 1957); E. Spinner, Westphalian D megaspores..., p. 96, Pl. 17, Figs. 6, 7.

Material. — Fifteen well-preserved specimens.

Dimensions (in μ):

	Z. Pb. H37	Z. Pb. L37
Diameter of spore	750	1,150
Length of Y-rays	350	527
Thickness of Y-rays	37.5	58
Width of auriculae at the base	212	280
Thickness of exospore	25	30

Description. — Trilete megaspores; in equatorial plane, specimens are round to subtriangular in outline. Y-rays slightly elevated, the highest ones at the spore apex. Arcuate ridges running almost on the spore margin, forming a narrow ring on the equator. In the corners of triangle, arcuate ridge joins rays of the triradiate figure and, in this place, the ring is slightly wider and forms auriculae. The width of auriculae is smaller than the distance between them. The length of auriculae, measured centrifugally along the spore radius, does not exceed 1/2 of radius. Spore surface smooth or slightly rough. Spore colour bright-brown.

Remarks. — There are many divergent views concerning the megaspores of the group Auriculati. This fact is due to a certain inconsistency of Zerndt who — under the name of T. auritus — introduces a few groups of spores and divides them into Triletes auritus I, II, III, etc., separates Types 11, 11a and 11b as well as Type 12 and, in addition to them all, T. auritus var. grandis and "auriculate spores 0.7 mm in diameter". In the diagnosis of the species T. auritus I, Zerndt emphasizes that, despite certain similar characters, the auriculate spores 0.7 mm in diameter seem

to represent another species. Zerndt (1931) explains that by Type 11 hemeans "spores 0.7 mm in diameter", described from the Izabella bed and that Triletes aurites from Libiaż he considers to be Type 12. In 1933, describing coal balls from the Carpathian Mountains, he designates Triletes auritus as Type 11. In his 1937b work, within the group Auriculati, Zerndt distinguished the following types: Triletes auritus I, T. auritus II and T. appendiculatus Maślankiewiczowa. The last-named type was previously described by him as Type 12 and, maybe also, 5. In that work, within T. auritus Type 11, Zerndt also distinguished Type 11a, i. e. T. auritus var. grandis. Since in stratigraphic tables, both these forms occur together as a single Type 11, Zerndt added an explanatory note in the text, according to which T. auritus var. grandis, Type 11a, is characteristic of Westphalian D and Stephanian of Bohemia. The remaining spores of this group are called by him $Type \ 11b$ and, furthermore, he explains that the range of their occurrence usually does not exceed Westphalian B and C. Spores of Types 11 and 12, found by him in North-French Basin (1938a), have been combined by Zerndt into one and presented in stratigraphic tables as Type 11. Describing spores from Saar Basin, Zerndt (1940) continues to distinguish two groups of spores within Type 11. Triletes auritus var. grandis is assigned by him to Type 11a and the remaining spores — to Type 11 and, like in Carboniferous of Bohemia, Type 11a is, according to him, stratigraphically younger than the remaining spores of Type 11. This seems to be a sufficient basis for keeping in force the specific name of T. auritus for the forms, described in 1930 under this name and being in conformity with the diagnosis of this species. Type 12 may virtually be considered as Triletes appendiculatus Maślankiewiczowa, especially as in his work on megaspores from Bohemia, a mutual relationship of these two groups of megaspores is precisely interpreted in this way by Zerndt (1932) himself. In the works by Zerndt in which Type 11, shown in tables, represents both the forms, previously designated as Type 11 and those, known as Type 12 as, for instance, in his work, published in 1938a, it is impossible to distinguish the species T. auritus. As far as the spores of T. auritus var. grandis are concerned, described from both Bohemia and Saar Basin, Zerndt presents the description of these forms and precisely states the stratigraphic range of T. auritus and T. auritus var. grandis.

"Spores 0.7 mm in diameter with auriculate exospore", described by Zerndt (1929), do not display differences which would allow one to consider them a different species and they completely fall within limits of specific variability of the species *Valvisisporites auritus* (Zerndt).

The species V. westphalensis, erected by Bhardwaj (1957b), to which such forms have been assigned by Zerndt as V. auritus (Zerndt), does not seem to be sufficiently justified. The occurrence of a characteristic elevation of ridges of the triradiate figure at the spore apex has been mentioned by previous authors as, for instance, Potonié & Kremp (1956, p. 94).

Affinities. — The cones of fossil lycopods, known as Polysporia mirabilis Newberry, have been described by Chaloner (1958). These cones contained megaspores similar to those of the species Valvisisporites auritus. The size of megaspores, found in these fructifications, vary from 520 to 1,360 μ . Chaloner emphasizes that a more correct seems to be the view of Dijkstra whose Triletes auritus is more broadly understood than that of Potonié & Kremp. The last-named authors distinguish — within the limits of the genus Valvisisporites — a certain number of species, some of which only slightly differ from each other. According to Chaloner, megaspores from the cones of Polysporia mirabilis correspond, in their shape and dimensions, to the species T. auritus Dijkstra (1946), V. auritus, V. flavus and V. augustae Potonié & Kremp (1956). In addition, he claims that Triletes auritus var. grandis differs from T. auritus only in its size.

Occurrence. — Poland, Upper Silesia — Westphalian B to D; Chełm I boring (samples 38—40) — Westphalian A. Czechoslovakia — Westphalian B and C. France — Westphalian A to D. The Netherlands — Westphalian A to C. Spain — Westphalian A. Germany — Westphalian B and C. Belgium — Westphalian C. U.S.A. (Illinois and Michigan Coal Fields and the States of Virginia and Kentucky) — Westphalian A to D. U.S.S.R. (Donetz Coal Field) — Westphalian C.

Subturma **Zonotriletes** Waltz, 1935 Infraturma **Zonati** Potonié & Kremp, 1954 Genus *Zonalesporites* (Ibrahim, 1933) Potonié & Kremp, emend. Spinner 1965

Type species: Zonalesporites brasserti (Stach & Zerndt, 1931) Potonié & Kremp, 1956

Zonalesporites brasserti (Stach & Zerndt, 1931) Potonié & Kremp, 1956 (Pl. VIII, Figs. 1-5)

- 1946. Triletes brasserti Stach & Zerndt; S. J. Dijkstra, Eine monographische..., p. 39, Pl. 5, Fig. 47-55; Pl. 15, Fig. 172 (here earlier synonymy included).
- 1947. T. brasserti Stach & Zerndt; A. T. Cross, Spore floras..., p. 300, Pl. 1, Fig. 22; Pl. 3, Figs. 66-67.
- 1950. T. brasserti Stach & Zerndt; C. Arnold, Megaspores..., p. 70, Pl. 1, Figs. 1, 2; Pl. 2, Fig. 1; Pl. 3, Fig. 1.
- 1954. Zonalesporites brasserti (Stach & Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Gattungen..., p. 161, Pl. 13, Fig. 59.
- 1955. Z. brasserti (Stach & Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 185, Pl. 7, Figs. 52-56.
- 1955. Z. brasserti (Stach & Zerndt) Potonié & Kremp; U. Horst, Die Sporae..., p. 185, Pl. 17, Figs. 6, 7; Pl. 18, Figs. 8, 9.

1955.	Triletes	brasserti	Stach &	Zerndt,	forma	minor; S	S. J.	Dijkstra,	Megasporas,
	p. 302, F	Pl. 37, Fig	. 14; Pl. 3	38, Fig. 1	6; Pl. 3	9, Fig. 22	; Pl.	40, Figs.	24-26.

- 1955. T. brasserti Stach & Zerndt, forma A; S. J. Dijkstra, Ibid., p. 303, Pl. 38, Fig. 15; Pl. 39, Fig. 23; PL 41, Fig. 27.
- 1956. T. brasserti Stach & Zerndt; S. J. Dijkstra, Lower Carboniferous, p. 13, Pl. 7, Figs. 73-76.
- 1956. T. brasserti Stach & Zerndt; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 257, Pl. 51, Figs. 8, 9, 117.
- 1956. T. brasserti Stach & Zerndt forma minor Dijkstra; M. C. Bonet & S. J. Dijkstra, Ibid., p. 257, Pl. 51, Fig. 12.
- 1957. T. brasserti Stach & Zerndt; S. J. Dijkstra & P. Piérart, Lower Carboniferous..., p. 9, Pl. 4, Figs. 61—78; Pl. 14, Figs. 185, 186; Pl. 19, Figs. 237—238.
- 1957. Zonalesporites brasserti (Stach & Zerndt) Potonié & Kremp; D. C. Bhardwaj, The palynological..., p. 108, Pl. 28, Figs. 25, 26; Pl. 29, Figs. 1, 2.
- 1958. Z.brasserti (Stach & Zerndt) Potonié & Kremp; P. Piérart, Palynologie..., p. 57, Pl. 10, Fig. 17; Pl. 11, Figs. 1, 2.
- 1959. Triletes brasserti Stach & Zerndt; M. R. Winslow, Upper Mississippian..., p. 35-37, Pl. 9, Figs. 3-10.
- 1962. Megahymenozonales brasserti (Stach & Zerndt) Ishchenko & Semenova; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 79, Pl. 12, Fig. 1.
- 1965. Zonalesporites brasserti (Stach & Zerndt) Potonié & Kremp; E. Spinner, Westphalian D megaspores..., p. 100, Pl. 16, Figs. 1-3.

Material. — More than 1,000 well-preserved specimens. Dimensions (in μ):

	Z, Pb. H27	Z. Pb. H28	Z. Pb. A23
Diameter of spore	700	925	1,750
Diameter of central part	425	600	1,000
Width of equatorial zone	150	250	375
Length of Y-rays	250	300	850
Height of Y-rays	50	50	200
Thickness of exospore	50	75	75

Description. — Trilete megaspores with equatorial outline round to subtriangular. Spore consisting of a central part and equatorial zone. Width of equatorial zone equals about 1/2 of the length of the spore radius. Equatorial zone consists of a few rows of strongly elongated appendages, closely adhering to each other. Triradiate ridge strongly elevated, their height decreasing with the distance from the spore apex, reaching almost to the outer margin of spore. It is precisely in the extension of these ridges that equatorial zone is the widest. Ridges of triradiate figure is undulate. Their upper margin is built of a substance which — under reflected light — is highly lustrous and which is similar to that forming the elements of equatorial zone. Spore surface smooth or covered with fine knobs — more or less semilunar in shape and irregularly scattered. Under reflected light, spores are tan-brown or black and cingulum red brown. Under transmitted light cingulum is orange-red.

Remarks. — Following the fact that, after more extensive studies,

Zerndt (1938 b) found it necessary to combine the forms, previously described as Types 18 and 20, in a single species, Triletes brasserti, and to designate it as No. 20, the diagnosis of this species was subject to modification. Type 18c, to which the spores with apertures, distributed all over the circumference of cingulum, are assigned by Zernd (1934), is the only type which should be excluded since this character assigns these forms rather to the species Superbisporites superbi (Bartlett) than to Triletes brasserti. Megaspores of Z. brasserti are marked by a considerable variability in size, whereas the ratio of the width of their cingulum and the height of Y-ridges to the diameter of the spore make up a constant magnitude. This regularity, occurring in the structure of the elements, referred to above, and the character of equatorial cingulum have primarily been taken into account in the assignment of spores of this species from Chełm.

In his works, Dijkstra distinguishes — within the species Z. brasserti — the minor, media and maior forms. This does not seem to be correct. As long as there is no certainty of these forms representing different species, dividing them only on the basis of size is not necessary in practice.

Occurrence. — Poland, Upper Silesia — Dinantian to Westphalian B; Chełm I boring (samples 38—40, 230, 239, 399, 425, 527, 573 and 575) — Viséan to Westphalian A. Czechoslovakia — Namurian A. Germany — Westphalian B and C. France — Westphalian A to D. Belgium — Westphalian C. The Netherlands — Westphalian A to C. Scotland — Dinantian to Lower Namurian. Spain — Westphalian A. Egypt — Lower Carboniferous. U.S.A. (Michigan and Illinois Coal Fields; the States of Virginia and Kentucky) — Namurian to Westphalian A. U.S.S.R. (Moscow and Donetz Coal Fields) — Lower Carboniferous.

Zonalesporites brasserti (Stach & Zerndt) f. solida (Dijkstra, 1957) nov. comb. (Pl. VII, Figs. 10-12)

1957. Triletes brasserti Stach & Zerndt forma solida Dijkstra; S. J. Dijkstra & P. Piérart, Lower Carboniferous..., p. 9, Pl. 3, Figs. 39-58.

Material. — Twenty well-preserved specimens. Dimensions (in μ):

41

	Z. Pb. G36	Z. Pb. G25	Z . Pb. H23	Z. Pb. G27
Diameter of spore	525	575	57 5	600
Length of Y-rays	162	250	250	225
Width of equatorial zone	37	50	87	38
Width of equatorial appendages				
at the base	7-10	10—16	11-16	10-16
Diameter of knobs	67	9-10	6-10	10
Thickness of exospore	25	45	50	50

Description. — Trilete megaspores; specimens, compressed in proximal-distal direction, are round in outline, most often, however, they take a subtriangular shape. Y-rays almost straight, roll-like, their width increasing with the distance from the spore apex. A slight elevation is formed in the place where Y-rays converge. Equatorial zone is built of appendages, closely adhering to each other, except for their ends which are loosely disposed, forming a sort of a dentation. Sometimes, on the distal surface or even on contact area, there occur small baculae or knobs. Spores are tan-brown or black.

Occurrence. — Poland, Chełm I boring (samples 573 and 575) — Viséan. U.S.S.R. (Moscow Coal Field) — Lower Carboniferous.

Zonalesporites radiatus (Zerndt, 1937) Spinner, 1965 (Pl. VI, Figs. 10-12)

- 1946. Triletes radiatus Zerndt; S. J. Dijkstra, Eine monographische..., p. 43 (here earlier synonymy included).
- 1954. Radiatisporites radiatus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Gattungen..., p. 163, Pl. 14, Fig. 63.
- 1955. R. radiatus (Zerndt) Potonić & Kremp, U. Horst, Die Sporae..., p. 188, Pl. 19, Figs, 21-23.
- 1956. R. radiatus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Sporae..., p. 133, Text-fig. 58.
- 1962. Megacapillarizonales radiatus (Zerndt) Ishchenko & Semenova; A. M. Ishchenko & E. V. Semenova, Megaspory..., p. 86, Pl. 17, Fig. 1.

Material. — More than 100 well-preserved specimens. Dimensions (in μ):

	Z. Pb. E40	Z. Pb. H29	Z. Pb. H18
Diameter of spore	525	750	. 900
Length of Y-rays	260	387	400
Width of Y-rays	35	50	37
Height of Y-rays	60	87	62.5
Length of equatorial appendages	75	162	112
Width of equatorial appendages	15—16	15—25	17.5-30
Distance between appendages	17 - 19	17-25	25-30
Diameter of knobs on contact area	16 - 20	17—25	20-25
Thickness of exospore	32	25	25

Description. — Trilete megaspores, subround in outline. Triradiate ridge undulate. They reach as far as the spore equator, their height being uniform over the entire length. In the equatorial part, there is a rim, consisting of cylindrically shaped appendages. They are simple, often clavate or 2-3 times bifurcated, sometimes pointed at the ends. These appendages are disposed more or less loosely, do not contact each other or, if at all, only with their bases, while the ends remain free. Hemispherical knobs,

irregularly scattered, occur on contact area and, occasionally, also on the distal surface. Spores brown or black.

Remarks. — Two groups of spores are distinguished by Zerndt (1937a) within this species. In the structure of their equatorial appendages, spores from Chełm are more similar to Zerndt's group II.

Occurrence. — Poland, Upper Silesia — Dinantian to Namurian B; Chełm I boring (samples 472, 527, 573 and 575) — Viséan to Namurian A. Czechoslovakia — Namurian A. U.S.S.R. (Donetz Coal Field and its western extension) — Viséan.

Zonalesporites superbus (Bartlett, 1928) Spinner, 1965 (Pl. IX, Fig. 14)

- 1946. Triletes superbus Bartlett; S. J. Dijkstra, Eine monographische..., p. 40, Pl. 6, Figs. 56-59; Pl. 7, Fig. 60 (here earlier synonymy included).
- 1947. T. superbus Bartlett; A. T. Cross, Spore floras..., p. 300, Pl. 1, Fig. 1; Pl. 3, Figs. 62-65.
- 1954. Superbisporites superbus (Bartlett) Potonié & Kremp; R. Potonié & G. Kremp, Die Gattungen..., p. 164.
- 1958. S. superbus (Bartlett) Potonié & Kremp; P. Piérart, Palynologie..., p. 59, Pl. 12, Figs. 1 a-b, 2 a-b.
- 1959. Triletes superbus Bartlett:, M. R. Winslow, Upper Mississippian..., p. 34, Pl. 8, Figs. 7-8; Pl. 9, Figs. 1-2.
- 1962. Superbisporites superbus (Bartlett) Potonié & Kremp; W. G. Chaloner, A Sporangiostrobus..., p. 78, Pl. 11, Figs. 1-2.
- 1965. Zonalesporites superbus (Bartlett); E. Spinner, Westphalian D..., p. 99.

Material. — Five incomplete specimens.

Dimensions (in μ):

	Z. Pb. I23
Size of spore $(\frac{1}{2})$ without rim	1250
Width of rim	550
Diameter of knobs	45-50
Length of hairlike appendages	ca. 150
Thickness of exospore	50

Description. — Despite the fact that only a half of distal part with the rim have been preserved, characteristic details of structure allowed us to identify this material. Megaspores large. Rim built of flat appendages, connected with each other in many places. Irregular apertures occur in the outermost part of rim. Distal surface covered with blunt knobs with hairlike appendages. Spores tan-brown, rim brown-cherry and lustrous.

Affinities. — Megaspores of Z. superbus are very similar to those, found in the cones of Sporangiostrobus obioensis Chaloner, 1962. According to Chaloner (1962), the latter megaspores display a close similarity to

Z. superbus in their dimensions, character of trilete apical prominence, distal appendages and a general appearance of the equatorial zone, and differ in a more open-work rim. The last-named character makes them more similar to *Triletes ramosus* Arnold (1950). With regard to equatorial zone, Chaloner places megaspores of *Sporangiostrobus ohioensis* between *Zonalesporites superbus* and *Triletes ramosus*. S. ohioensis has been found in the State of Ohio, U.S.A., in the group of the New River, in the series of Pottsville, which is considered by Chaloner as an equivalent of the lower part of Westphalian A in Europe.

Occurrence. — Poland, Upper Silesia — Westphalian B and C.; Chełm I boring (samples 38, 40 and 56) — Westphalian A. Czechoslovakia — Westphalian B and C. Germany — Westphalian C. France — Westphalian A to C. The Netherlands — Westphalian B and C. Belgium — Westphalian C. Turkey — Westphalian C. U.S.A. (Michigan and Illinois Coal Field) — Westphalian A.

Genus Triangulatisporites Potonié & Kremp, 1954 Type species: Triangulatisporites triangulatus (Zerndt, 1930) Potonié & Kremp, 1954 Triangulatisporites triangulatus (Zerndt) Potonié & Kremp, 1954

(Pl. VII, Figs. 8 and 9)

- 1946. Triletes triangulatus Zerndt; S. J. Dijkstra, Eine monographische..., p. 52, Pl. 4, Figs. 24-25, 27-34 (here earlier synonymy included).
- 1947. T. triangulatus Zerndt; A. T. Cross, Spore floras..., p. 302, Pl. 1, Fig. 5; Pl. 4, Figs. 112-114.
- 1950. T. triangulatus Zerndt; Ch. Arnold, Megaspores..., p. 75, Pl. 6, Figs. 1-2, 4.
- 1951. T. triangulatus Zerndt; M. Kalibová, Megaspory..., p. 32, Pl. 3, Figs. 14-15.
- 1954. Triangulatisporites triangulatus (Zerndt) Potonié & Kremp; R. Potonié & G. Kremp, Die Gattungen..., p. 163, Pl. 14, Fig. 62; Pl. 20, Fig. 108.
- 1955. Triletes triangulatus Zerndt; S. J. Dijkstra, Megasporas..., p. 338, Pl. 37, Fig. 21; Pl. 38, Figs. 19-20.
- 1956. Triangulatisporites triangulatus (Zerndt) Potonié & Kremp, R. Potonié & G. Kremp, Die Sporae..., p. 128, Pl. 9, Figs. 68—72.
- 1956. Triletes triangulatus Zerndt; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 260, Pl. 7, Figs. 32-34.
- 1958. Triangulatisporites triangulatus (Zerndt) Potonié & Kremp; P. Piérart, Palynologie..., p. 58, Pl. 3, Fig. 6.
- 1959. Triletes triangulatus Zerndt (sensu Dijkstra); M. R. Winslow, Upper Mississippian..., p. 38, Pl. 10, Figs. 1-10.
- 1961. Triletes triangulatus Zerndt; M. V. Oshurkova, Megaspory..., p. 113, Pl. 9, Fig. 7.
- 1962. Megastenozonales triangulatus (Zerndt) Ishchenko & Semenova; A. M. Ischenko & E. V. Semenova, Megaspory..., p. 75, Pl. 10, Figs. 2 a-b.

Material. — Three well-preserved specimens and one fragment. Dimensions (in μ):

Diameter of spore without			
equatorial zone	400	500	500
Width of equatorial zone	62.5	100	100
Length of Y-rays	225	250	275
Diameter of lumina of reticulum	57.5-87.5	37.5 - 62.5	62.575
Thickness of equatorial zone	7.5	9	10
Thickness of exospore	20	25	30

Description. - Trilete megaspores, round or triangular in outline. Triradiate ridges distinct, extending from the center to margin of spore and even pass onto equatorial zone, slightly elevated and somewhat undulate. Their height increases towards the center of spore. Arcuate ridges run along the spore circumference and form an almost closed circle. All elements of sculpture, situated on the spore surface, are formed by perispore after whose destruction spores are smooth. Perispore is marked by a reticulate structure, which is best-developed on the distal side. Lumina of reticulum polygonal or round, on the proximal surface of reticulum they are indistinct and with a smaller diameter. Proximal part of perispore radially folded. In the equatorial part, there is situated a membraneous, translucent zone, often having a slightly undulate margin and a reticulate structure. In the case when ridges of triradiate figure pass onto the zone, its width in this place increases and spores take a triangular shape. Under reflected light, spore is dark-brown; under transmitted light, the body of spore is dark and opaque and equatorial zone transparent and yellow-red.

Remarks. — A small number of specimens did not allow one to carry out detailed studies which might facilitate an accurate distinction between closely related species. At present, the most correct seem to be the view of Potonié and Kremp (1956a) who accept the existence of a few, closely related species of the genus Triangulatisporites. Dijkstra (1946) combines them to form a single species of Triangulatisporites triangulatus. The correctness of Potonié's and Kremp's standpoint is testified to by the fact that megaspores of different species of the genus Selaginellites, which was considered to be a parent genus of megaspores of the genus under study, are morphologically only very slightly differentiated. There are a few species of Selaginellites from Carboniferous whose megaspores are marked by a characteristic equatorial zone and reticulate perispore and which differ only in the size of spores and of the lumina of reticulum, such as, for instance, S. crassicinctus Hoskins & Abbot or S. suissei Zeiller, which developed megaspores with morphological characters in conformity with the descriptions of forms, assigned by Dijkstra to T. triangulatus.

Affinity. - Lycopsida (Selaginellales).

Occurrence. — Poland, Upper Silesia — Namurian A to Westphalian D; Chełm I boring (sample 38) — Westphalian A. Czechoslovakia — West-

Z. Pb. A22 Z. Pb. H21 Z. Pb. H25

phalian B to Stephanian B. Germany — Westphalian C. The Netherlands — Westphalian A to C. France — Westphalian A to Stephanian D. Spain — Westphalian A. Belgium — Westphalian C. Turkey — Namurian A to Westphalian D. U.S.A. (Illinois and Michigan Coal Fields) — Namurian to Westphalian. U.S.S.R. (Donetz Coal Field and its western extension) — Westphalian C.

> Turma **Cystites** Potonié & Kremp, 1954 Genus *Cystosporites* Schopf, 1938 Type species: *Cystosporites breretonensis* Schopf, 1938 *Cystosporites giganteus* (Zerndt, 1930) Schopf, 1938 (Pl. VIII, Figs. 6–10)

- 1946. Cystosporites giganteus (Zerndt); S. J. Dijkstra, Eine monographische..., p. 56, Pl. 12, Figs. 137-138; Pl. 13, Figs. 142-145; Pl. 15, Figs. 157-160 (here earlier synonymy included).
- 1950. C. giganteus (Zerndt) Schopf; Ch. Arnold, Megaspores..., p. 87, Pl. 18, Fig. 1.
- 1951. C. giganteus (Zerndt) Schopf; M. Kalibová, Megaspores..., p. 37, Fl. 4, Figs. 4-5.
- 1954. C. giganteus (Zerndt) Schopf; W. G. Chaloner, Mississippian megaspores..., p. 30, Pl. 2, Figs. 7-8.
- 1955. C. giganteus (Zerndt) Schopf; S. J. Dijkstra, Megasporas..., p. 339, Pl. 44, Figs. 48-50.
- 1956. C. giganteus (Zerndt) Schopf; R. Potonié & G. Kremp, Die Sporae..., p. 150, Pl. 10, Figs. 76, 79.
- 1956. C. giganteus (Zerndt) Schopf; S. J. Dijkstra, Lower Carboniferous..., p. 15, Pl. 10, Figs. 104-110.
- 1956. cf. Cystosporites giganteus (Zerndt) Schopf; S. J. Dijkstra, Ibid., p. 12, Pl. 6, Figs. 59-63.
- 1956. C. giganteus (Zerndt) Schopf; M. C. Bonet & S. J. Dijkstra, Megasporas..., p. 260, Pl. 16, Figs. 41-44.
- 1957. C. giganteus (Zernd) Schopf; D. C. Bhardwaj, The palynological..., 113, Pl. 30, Fig. 6.
- 1958. C. giganteus (Zerndt) Schopf; P. Piérart, Palynologie..., p. 62, Pl. 3, Fig. 7; Pl. 10, Figs. 14-15.
- 1959. C. giganteus (Zerndt) Schopf; M. R. Winslow, Upper Mississippian..., p. 52, Pl. 11, Figs. 9, 10; Pl. 12, Figs. 1-4.
- 1963. C. giganteus (Zerndt) Schopf; P. Piérart, Synopsis..., p. 243, Pl. 4, Figs. 19-20.
- 1965. C. giganteus (Zerndt) Schopf; E. Spinner, Westphalian D megaspores..., p. 100, Pl. 16, Figs. 5, 6.

Material. — Thirty fertile specimens and more than 100 abortive forms. Abortive forms are usually better-preserved than fertile specimens, which are more fragile, with a relatively thin exospore, very often strongly folded and compressed. On account of the middle part of their exospore being very thin, frequently it is subject to destruction and the remaining two parts are separated from each other. The proximal part is the most often met with part of the spore.

Dimensions (in μ):

a) Fertile form

Z.Pb.H3 (a fra	Z. Pb. H1 gment)	Z. Pb. D33 (apex lacking)
3,000	3,750	5,500
2,000	1,500	2,000
250		250
112		400
25	_	40
12.5	5	10
	20	30
	[
36	_	49
	Z. Pb. H3 (a fra 3,000 2,000 250 112 25 12.5 36	Z. Pb. H3 Z. Pb. H1 (a fragment) 3,000 3,750 2,000 1,500 250 — 112 — 25 — 12.5 5 — 20 3—6 —

b) Abortive form

	Z. Pb. L36	Z. Pb. H11	Z. Pb. L20
Length of spore	400	587	925
Width of spore	400	362	650
Length of Y-rays	150	200	340
Thickness of exospore	30	57	30

Description. — a) Fertile form. Trilete megaspores sacklike, with polar axis strongly elongated. Spores longitudinally or transversely folded. Contact area situated at or near the apex of spore; as compared with the size of spore, it is relatively small. Width of rays of triradiate figure is almost uniform over the entire length or slightly larger at the apex. Arcuate ridges distinct, sometimes varying in length, two of them often being identical in size, and the third --- somewhat smaller. Height and width of arcuate ridges are more or less equalling each other. A distinct, oblong, fairly wide appendage, which seems to be a sort of an extension of exospore, occurs on the distal pole of some specimens. According to Bocheński (1936), this appendage served the spore to attach itself to the sporangium. Exospore surface smooth or slightly rough. In a single specimen, thickness of exospore is not uniform. It is the thickness at the apex, thinner near contact area on distal pole and the thinnest in the middle part. In these forms, exospore is formed by a coil of threads, representing a sort of an irregular reticulum; in the places where exospore is thick, it takes a spongy appearance and — in its thinner parts — is transparent. In the last-named case, coils of threads are looser and free spaces are formed (similar to lumina of the reticulum). Depending on its thickness, exospore is — under transmitted light — yellow-brown to black.

b) Abortive form. Trilete megaspores, round or oval. Contact area

occupies an almost entire proximal part of spore. Rays of trilete figure distinct. Arcuate ridges strongly developed. On laterally compressed specimens, contact area takes the form of a pyramid. Spores smooth. Thickness of exospore, as compared with the size of spore, fairly large. Spores are tan-brown to black.

Remarks. — The dimensions of spores of C. giganteus (Zerndt), from Chełm are somewhat smaller than those of the spores, described by Zerndt (1930a) but they fall within limits of the specific variability. Both fertile and abortive forms are abundantly represented. Some dozen complete fertile megaspores have been found which, on account of their thin exospore, were strongly folded and compressed. All elements of structure may be traced on them, but they are not fit to be photographed. The abortive megaspores very seldom occur in combination with the fertile form, whereas it is often observed that three abortive spores remain connected together. In abortive forms, contact area displays a considerable variability. In some laterally flattened spores it has the appearance of a pyramid. Likewise, the height of arcuate ridges is a variable character.

Affinities. - Spores of C. giganteus have been found by Bocheński (1936) in the cones of Lepidocarpon (Lepidostrobus) major (Brogn.) Potonié & Kremp, 1956. According to this author (p. 238), sporangia of Lepidocarpon major "contains only one tetrad of megaspores, one of which is disposed along the axis of sporangium and developed to giant dimensions of 11.5 mm in length and 5.1 mm in width, while the remaining three are abortive, round and only 0.4 to 0.6 mm in diameter. Large megaspores have, in their distal (adaxial) part, an appendage of the exospore membrane with a knot. This appendage served the large megaspore to attach itself to the adaxial wall of sporangium". Continuing this description, Bocheński identifies the spores, referred to above, with those of Triletes giganteus Zerndt and states that the large megaspore germinated inside the sporangium, probably still on sporophyte, which would testify to the fact that this was a transition stage from archegoniates with megaspores loosely resting in sporangium — to the forms in which megaspores are morphologically connected with sporangium. He considers them to be "a transition link from lepidodendrons to Lepidospermae".

Occurrence. — Poland, Upper Silesia — Dinantian to Westphalian D; Chełm I boring (samples 38, 39, 56, 154, 239, 263, 399, 571b and 573) — Viséan to Westphalian A. Czechoslovakia — Namurian A to Stephanian B. Germany — Namurian to Westphalian C. France — Westphalian A to Stephanian A. Spain — Westphalian A to Stephanian. Belgium — Westphalian C. The Netherlands — Namurian B to Westphalian D. Scotland and Ireland — Namurian. Turkey — Namurian A to Westphalian D. Egypt — Upper Devonian to Namurian. U.S.A. (Illinois and Michigan Coal Fields and the State of Indiana) — Namurian to Westphalian.

Cystosporites varius (Wicher, 1934) Dijkstra, 1946 (Pl. IX, Figs. 1, 6, 8)

- 1946. Cystosporites varius (Wicher) Dijkstra; S. J. Dijkstra, Eine monographische..., p. 58, Pl. 14, Figs. 146-156 (here earlier synonymy included).
- 1950. C. varius (Wicher) Dijkstra; Ch. Arnold, Megaspores..., p. 88, Pl. 16-17.
- 1952. C. varius (Wicher) Dijkstra; S. J. Dijkstra, The stratigraphical..., p. 166, Pl. 6, Fig. 2.
- 1955. C. varius (Wicher) Dijkstra; U. Horst, Die Sporae..., p. 192, Pl. 17, Fig. 2.
- 1956. C. varius (Wicher) Dijkstra; R. Potonié & G. Kremp. Die Sporae..., p. 152, Pl. 10, Figs. 80-85.
- 1958. C. varius (Wicher) Dijkstra; P. Piérart, Palynologie..., p. 61, Pl. 3, Fig. 8.
- 1959. C. varius (Wicher) Dijkstra; M. R. Winslow, Upper Mississippian..., p. 51, Pl. 12, Figs. 5-8.
- 1961. C. varius (Wicher) Dijkstra; P. Piérart, Les mégaspores..., p. 41, Pl. 3, Figs. 3-5; Pl. 5, Fig. 6.
- 1965. C. varius (Wicher) Dijkstra; E. Spinner, Westphalian D megaspores..., p. 102, Pl. 16, Figs. 7—9.

Material. — Thirty well-preserved specimens of abortive form and 4 partly destroyed specimens of fertile form.

Dimensions (in μ):

a) Fertile form

	Z. Pb. L19	Z. Pb. L18
Length of spore	2,000	2,500
Width of spore	750	1,250
Thickness of exospore	12	12.5

b) Abortive form

	Z. Pb. A30	Z. Pb. H13	Z. Pb. C19
Diameter of spore	500	750	1075
Height of spongy cushion	125	275	325
Thickness of exospore	37	37.5	50

Description. — a) Fertile form. Megaspores, compressed in lateral direction, are oval in outline, slightly elongated; those, compressed in proximal-distal direction, are probably oval, which cannot be stated with any degree of certainty because of the flattening and strong folding of specimens. A spongy trilobate cushion occurs on the proximal pole. Exospore is built like an irregular reticulum with its lumina smaller than those in C. giganteus. Under transmitted light, spores are orange-brown.

b) Abortive forms. Megaspores, compressed in proximal-distal direction, are round or triangular and often irregular in outline, depending on the manner of compression. Those, compressed in lateral direction, are pearlike or triangular. A trilobate or triangular spongy cushion occurs on proximal pole. Small folds which give laterally compressed spores the shape, of a tied up sack radially diverge from this cushion. Spore surface smooth and mat, tan-brown to black.

Remarks. — Megaspores of C. varius (Wicher) are most similar to spores of C. giganteus (Zerndt) from which they differ, however, in larger dimensions of abortive forms and smaller lumina in the coils of exospore of fertile forms. The occurrence of trilobate or triangular spongy apical cushion, covering concrescence scars and contact area, makes up a fundamental feature characteristic of C. varius.

Spores of *C. varius* occur in almost all coal fields the world over. Since in the material, coming from geographically different territories, no considerable differences have been discovered in the structure and dimensions of these spores, this species seems to be fairly conservative. Moreover, it is a species with a considerable stratigraphic significance, allowing one to settle a boundary between Namurian and Westphalian. It is marked by an extensive geographical range; spores of this species have been found even in China (Piérart, 1961). This finding facilitates a correlation of deposits from different coal fields.

The solution of the problem of a relationship of C. varius to C. breretonensis Schopf is very important. The most correct seems to be the standpoint of Winslow (1959) who assigns C. breretonensis forma abortivus Schopf (1938, p. 40, Pl. 1, Fig. 10 and Pl. 8, Fig. 4) to the species C. varius (Wicher) Dijkstra. On the other hand, C. breretonensis forma reticulatus Schopf is considered by this author as an independent species. This view seems to be the more correct as Winslow, the same as Schopf, used the material from the Illinois Coal Field and, in addition, she had at her disposal much more numerous material than that, used by predecessor.

Affinities. — The botanic position of the spores of C. varius could be settled owing to Bocheński (1936) who — in the cone of Lepidocarpon (Lepidostrobus) bohdanowiczi (Bocheński, 1936) Potonié & Kremp, 1956 found the spores which he identified with those of C. varius (Wicher) and those of Zerndt's Type 30. The combination of fertile and abortive forms is possible only when complete fertile specimens — or at least their proximal part — are found since, in such a case, the occurrence of spongy apical cushion of the spore constitutes a diagnostic character.

Occurrence. — Poland, Upper Silesia — Westphalian A?, B and C; Chełm I boring (samples 38, 39, 40, 56, 154 and 239) — Namurian C to Westphalian A. Czechoslovakia — Namurian C to Stephanian A. Germany — Westphalian A to C. France — Westphalian C. Belgium — Westphalian C. The Netherlands — Westphalian A to C. Spain — Westphalian A. U.S.A. (Michigan and Illinois Coal Fields) — Namurian C to Westphalian. China — Stephaniar to Permian.

Cystosporites verrucosus Dijkstra, 1946 (Pl. IX, Figs. 2, 3, 9, 13, 16, 17)

1946. Cystosporites? verrucosus forma abortivus Dijkstra; S. J. Dijkstra, Eine monographische..., p. 60, Pl. 15, Figs. 163-166.

1946. Custosporites? Dijkstra; Ibid., p. 61, Pl. 15, Figs. 161, 162.

1955. C. verrucosus Dijkstra; S. J. Dijkstra, La correlation ..., p. 114, Pl. A, Figs. 1-7.

1956. C. verrucosus Dijkstra; M. C. Bonet & S. J. Dijkstra, p. 260, Pl. 57, Figs. 47-51.

1959. C. verrucosus Dijkstra; M. R. Winslow, Upper Mississippian..., p. 53, Pl. 11, Figs. 4-8.

1963. C. verrucosus Dijkstra; P. Piérart, Synopsis..., p. 242, Pl. 4, Figs. 18, 21-23.

Material. — Three almost complete specimens and a few fragments of fertile form, as well as six specimens of abortive form.

Dimensions (in μ):

a) Fertile form

	Z. Pb. L16	Z. Pb. L17	Z. Pb. 125
Length of spore	1,750 1,000	2,200 1,600	3,250 1,875
Length of spines	75—88	40-52	40-65
Width of spines at the base	25	38	37
Length of winglike processes		500	—
Width of base of winglike processes	_	750	
Width of ends of winglike processes	—	125	_
Thickness of exospore	15 .	25	18

b) Abortive form

	Z. Pb. I19	Z. Pb. 118	Z . Pb. I4
Length of spore	575	850	1,325
Width of spore	450	650	1,300
Height of apical prominence	250	400	3 8 0
Width of apical prominence	62	125	100
Length of spines	25-50	12.5-20	17—45
Width of spines at the base	15	16	20
Thickness of exospore	12	30	20

Description. — a) Fertile form. Trilete megaspores, shaped like an oblong sack. Rays of triradiate figure are seldom visible, mostly there occurs a germination cleft or, in some cases, the apical part is lacking. Contact area is surrounded by longitudinal folds of exospore, running as far as more or less 1/3 or 1/2 of the spore length. The width of contact area is almost equal to the height. Exospore is covered with fine spines, which are irregularly scattered primarily on the proximal surface of spore. These spines gradually disappear towards the distal surface. On the distal end of spore, there are winglike processes (1-2) triangular in outline. Spores are tan-brown on their distal end and dark-brown to black on the proximal end.

b) Abortive form. Trilete megaspores, round or oval in outline, with a large apical prominence. Y-rays sometimes are slightly marked. Arcuate ridges fairly distinct. Near arcuate ridges, exospore covered with longitudinally running folds, which form irregular elevations on the distal surface. The entire exospore is covered with irregularly hairlike spines, which occur most abundantly on the proximal side of spore. Spores brown to black.

Remarks. — Fertile spores of C. vertucosus are completely preserved in few cases only but — due to a very characteristic sculpture of surface which is identical with that in abortive forms — they are easily distinguishable.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A. Belgium and the Netherlands — Westphalian A and B. Spain — Westphalian A. U.S.A. (Illinois Coal Field) — Westphalian?

Cystosporites strictus Dijkstra, 1957 (Pl. VII, Fig. 3)

1957. Cystosporites strictus Dijkstra; S. J. Dijkstra & P. Piérart, Lower Carboniferous..., p. 14, Pl. 13, Figs. 165-176; Pl. 14, Figs. 177-178.

Material. - One specimen of fertile form.

Dimensions (in μ):

	Z. Pb. H15
Length of spore	1450
Width of spore	925
Length of Y-rays	160
Distance of arcuate ridges from	
the spore apex	200
Width of equatorial fold	37
Depth of equatorial fold	50
Thickness of exospore in proximal	25
part	
Thickness of exospore in distal part	4

Description. — Fertile form. Megaspore laterally compressed, suboval in outline. In the equatorial part of spore, there occurs a characteristic fold, which divides the spore into two parts approximately equal in length. Rays of Y-figure slightly elevated. Arcuate ridges poorly visible. Spore surface smooth, mat, gray or tan-brown.

Remarks. — Megaspore of C. strictus from Chełm is most similar to the specimen, figured by Dijkstra (1957, Pl. 14, Fig. 177).

Occurrence. — Poland, Chełm I boring (sample 571b) — Viséan. U.S.S.R. — Lower Carboniferous.

Cystosporites sp. (Pl. IX, Fig. 4)

Material. — One well-preserved specimen. Dimensions (in μ):

Z. Pb. G23

Length	of	spore	575
Width o	of	spore	500
Length	of	Y-rays	100
Height	of	apical prominence	375
Width c	of	apical prominence	138
Thicknes	SS	of exospore	50

Description. — Trilete megaspore, pearlike in shape, with a strongly extended necklike apical prominence. Y-rays on the apex of apical prominence. Scar of Y-figure cleaved. Spore surface smooth, mat, dark brown.

Remarks. — Megaspore of Cystosporites sp. is most similar to abortive spores of C. giganteus, from which it differs only in a more characteristic necklike apical prominence. Such a regularly built apical prominence, occurring in the form of a tube, extended at the bottom and with a distinct triradiate germination cleft at the apex, has never been recorded in the spores of C. giganteus.

Occurrence. — Poland, Chełm I boring (sample 154) — Westphalian A.

Forms incertae sedis

Triletes sp. 1 (Pl. IX, Fig. 19)

Material. — One well-preserved specimen. Dimensions (in μ):

7	Dh	т	0
<u>_</u> .	ΓD.	т.	0

Diameter of spore	800
Length of Y-rays	500
Height of Y-rays	250
Thickness of exospore	60

Description. — Trilete megaspore; compressed in proximal-distal direction, is triangular in outline. Ridges of Y-figure flat and straight, except for the apex where they are undulate. Arcuate ridges invisible. Surface of exospore smooth. Spore tan-brown.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A.

Triletes? sp. 2 (Pl. IX, Fig. 12)

Material. — Two specimens. Dimensions (in μ):

	Z. Pb. B29	Z. Pb. G17
Length	1,250	1,630
Thickness	1,250 12	1,362

Description. — Specimens strongly compressed, round or oval, vesicular in structure. They are strongly folded in various directions. In some place, there seems to outline the triradiate figure which is not, however, certain since these may as well be the shadows thrown by the folding of membrane. Surface fine-granular. Under reflected light, these specimens are tan-brown, and under transmitted light, yellow-orange.

Remarks. — In their appearance, these specimens, resemble the megaspores of *Cryptoletes aplicatus* from Scotland, described by Dijkstra (1956), but they are much smaller and occur in lower parts of Carboniferous.

Occurrence. — Poland, Chełm I boring (samples 38 and 40) — Westphalian A.

Megaspore?

(Pl. IX, Fig. 5)

Material. — Six specimens. Dimensions (in μ):

	Z. Pb. B19	Z. Pb. 113
Diameter	 . 450	500
Thickness	. 50	60

Description. — Round, disclike specimens, with a rough, fine-granular surface, on which there occasionally occur small longitudinal swellings, resembling foldings. These are relatively thick forms.

Occurrence. - Poland, Chełm I boring (sample 39) - Westphalian A.

MICROSPORES

Anteturma **Sporites** H. Potonié, 1893 Turma **Triletes** (Reinsch, 1881) Potonié & Kremp, 1954 Subturma **Azonotriletes** Luber, 1935 Infraturma Laevigati (Bennie & Kidston, 1886) Potonié & Kremp, 1954 Genus Calamospora Schopf, Wilson & Bentall, 1944 Type species: Calamospora hartungiana Schopf, 1944 Calamospora sp.

(Pl. XII, Fig. 5)

Material. — One well-preserved specimen. Dimensions (in μ):

Z. Pb. N11

Diameter of spore . . . 242

Description. — Spore subround in outline, with a triradiate figure visible close to its margin. Y-rays straight, thin, unequal in length; one of them being much longer than the remaining two, equals about 1/2 of the length of the spore radius. Spore surface fine-granular, covered with numerous, wide folds intersecting each other at different angles in the center. Spore is yellow, in folded places, tan-brown.

Remarks. - Calamospora sp. has been found, among microspores, in a microscopic preparation. On account of its dimensions, it should be classified as a transitory form between micro- and megaspores. Being of a considerable size, it has, however, a thin exospore. In its diameter, it is most similar to the megaspores of the species C. laevigata (Ibrahim), from which it differs in a thinner and differently folded exospore. In its general appearance and manner of folding, it resembles microspores of the species C. microrugosa (Ibrahim), whose diameter does not, however, exceed 100 µ. The upper limit of size, assumed for microspores by Zerndt, amounts to 200 μ , except for e.g. microspores of the genus *Microsporites*, whose diameter exceeds 400 μ . Since only one specimen of Calamospora sp. has been found which — in its structure — did not resemble any forms, either those known from literature, or found in the profile of the Chełm I boring, it has been assigned to the genus, without giving it any specific name. This form may constitute a certain stage in the development of one of the known species, but there are no intermediate forms.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A.

Infraturma Apiculati (Bennie & Kidston, 1886) R. Potonié, 1956 Subinfraturma Nodati Dybová & Jachowicz, 1957 Genus Lophotriletes (Naumova, 1937) Potonié & Kremp, 1954 Type species: Lophotriletes gibbosus (Ibrahim, 1933) Potonié & Kremp, 1954 Lophotriletes cf. primitivus Ishchenko, 1956 (Pl. X, Fig. 3) 1956. Lophotriletes primitivus Ishchenko; A. M. Ishchenko, Spory..., p. 37, Pl. 5, Figs. 66-67.

Material. — One well-preserved specimen. Dimensions (in μ):

								Z.	Pb.	N23	;
Diameter	of	spore							46		
Diameter	of	knobs							2.5—	-10	

Description. — Trilete microspore, triangular in outline. Length of Y-rays equalling about 2/3 of the spore radius. Spore surface covered with irregular knobs, sometimes narrowing at the apex, irregularly scattered all over the surface. Exospore medium in thickness and dark-yellow. Knobs yellow or tan-brown.

Remarks. — Spore of L. cf. primitivus from Chełm does not display any important differences as compared with holotype. It differs only in the stratigraphic position.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A. U.S.S.R. (Donetz Coal Field) — Viséan to Namurian.

Genus Pustulatisporites Potonié & Kremp, 1954 Type species: Pustulatisporites pustulatus Potonié & Kremp, 1954 Pustulatisporites irregularis n. sp.

(Pl. X, Fig. 6)

Holotypus: Specimen No. Z. Pb. M86; Pl. X, Fig. 6. Stratum typicum: Viséan. Locus typicus: Chełm I, sample 497.

Derivatio nominis: Lat. irregularis = irregular; after irregularly scattered spines covering the spore surface.

Diagnosis. — Microspore relatively small. Y-rays ridgelike, reaching the spore margin. Spore surface covered with short, blunt spines, irregularly scattered and widely spaced.

Material. — Six well-preserved specimens. Dimensions (in μ):

	Z. Pb. M86	Z . Pb. M 87
Diameter of spore	30.8 to 1.5	44 to 1.5

Description. — Microspores triangular with rounded corners. Trilete rays strongly thickened, slightly undulate, reaching the spore margin. Spore surface covered with short, bluntly ended spines, irregularly scattered all over the surface, very widely spaced. Their bases sometimes contact each other. Four to five spines occur on the equatorial outline. Spores thin, bright-yellow, except for trilete rays which are tan-brown.

Remarks. — *Pustulatisporites irregularis* n. sp. differs from most species of this genus mainly in thicker Y-rays and relatively small dimensions.

Occurrence. — Poland, Chełm I boring (samples 497 and 527) — Viséan.

Subturma Perinotriletes Erdtman, 1947

Genus Vestispora (Wilson & Hoffmeister, 1956) Bhardwaj, 1957 Type species: Vestispora profunda Wilson & Hoffmeister, 1956 Vestispora cf. lucida (Butterworth & Williams, 1958) Potonié & Kremp,

1960

(Pl. XII, Fig. 6)

- 1958. Glomospora lucida Butterworth & Williams; A. M. Butterworth & R. W. Williams, The small spore..., p. 385, Pl. 4, Figs. 4-6.
- 1960. Vestispora (al. Glomospora) lucida (Butterworth & Williams) Potonié; R. Potonié, Synopsis..., p. 52.

Material. - One well-preserved specimen.

Dimensions (in μ):

Z. Pb. N23

Diameter of spore88Diameter of central body66

Description. — Trilete microspore, round in outline. Central body is completely surrounded by a round bladder which forms a wide zone on the equator. Y-rays straight, their length is almost equal to the spore radius. Surface of central body and bladder smooth. Bladder strongly folded. Folds run spirally and irregularly, obscuring the trilete rays.

Remarks. — Microspore of *Vestispora* cf. *lucida* from Chełm differs from those, described by Butterworth and Williams, only in the stratigraphic position.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A. Scotland — Namurian.

Turma Zonales (Bennie & Kidston, 1886) R. Potonié, 1956 Subturma Auritotriletes Potonié & Kremp, 1954 Infraturma Auriculati (Schopf, 1938) Potonié & Kremp, 1954 Genus Triquitrites (Wilson & Coe, 1940) Potonié & Kremp, 1954 Type species: Triquitrites arculatus Wilson & Coe, 1940 Triquitrites cf. articulosus (Ishchenko, 1956) Sullivan & Neves, 1964 (Pl. XII, Figs. 1 and 2)

- 1956. Trilobozonotriletes articulosus Ishchenko; A. M. Ishchenko, Spory..., p. 98, Pl. 19, Fig, 237.
- 1964. Triquitrites articulosus (Ishchenko) Sullivan & Neves; H. J. Sullivan & R. Neves, Triquitrites..., p. 1087.

Material. — Four well-preserved specimens. Dimensions (in μ):

	Z. Pb. M44	Z. Pb. M42
Length of spore	. 68.2	68.2
Length of auriculae	. 16.5	17.6
Width of auriculae	. 27.5	33

Description. — Trilete microspore, trilobate in outline. Length of Y-rays amount to 1/2 - 2/3 of the spore radius. Three thick auriculae, two of which are mostly larger and the third of them almost by half smaller, occur in corners. Spores thick-walled, dark-brown.

Remarks. — Microspores of T. cf. articulosus (Ishchenko) differ from those, described by Ishchenko (1956) in slightly larger dimensions. The size of auriculae, which in spores from Chełm are twice as large as those of microspores from the Donetz Coal Field, constitutes the most important difference.

Occurrence. — Poland, Chełm I boring (samples 399 and 497) — Viséan to Namurian A. U.S.S.R. (Donetz Coal Field) — Viséan and Namurian?

Subturma Zonotriletes Waltz, 1935

Infraturma Cingulati Potonié & Klaus, 1954

Genus Lycospora (Schopf, Wilson & Bentall, 1944) Potonié & Kremp, 1954 Type species: Lycospora micropapillata (Wilson & Coe, 1940) Schopf, Wilson & Bentall, 1944

Lycospora intermedia n. sp.

(Pl. X, Fig. 7)

Holotypus: Specimen No. Z. Pb. N18; Pl. X, Fig. 7. Stratum typicum: Namurian A and Westphalian A.

Locus typicus: Chelm I, sample 38.

Derivatio nominis: Lat. intermedius = intermediate; on account of its structure, being intermediate between Lycospora brevijuga Kosanke and L. pseudoannulata Kosanke.

Diagnosis. — Microspores with a very distinct triradiate figure. Width of cingulum equalling 1/4 — 1/2 of the length of spore radius.

Material. — Fourteen well-preserved specimens. Dimensions (in μ):

	Z	. Pb. N18	Z. Pb. M36
Diameter of spore		37.4	40
Thickness of Y-rays		2.2	2

Description. — Trilete microspores, triangular or round in shape. Triradiate figure very distinct. Y-rays thick, roll-like, reaching the spore margin. Cingulum wide, on the average equalling 1/3 of the length of spore radius. Spore surface covered with fine granules. Equatorial outline almost smooth. Spore relatively thin, bright-yellow.

Remarks. — Lycospora intermedia n. sp. takes an intermediate position between L. brevijuga Kosanke, 1950 and L. pseudoannulata Kosanke, 1950. In its general appearance, dimensions and structure of Y-rays, it resembles the spores of L. brevijuga from which it differs in a considerably wider cingulum. From L. pseudoannulata it differs in a somewhat smaller diameter, thicker Y-rays and more distinct sculpture. Both the species L. intermedia and L. pseudoannulata have a wide cingulum.

Occurrence. — Poland, Chełm I boring (samples 38, 39, 154, 207, 239, 399 and 413) — Namurian to Westphalian A.

Genus Densosporites (Berry, 1937) Butterworth, Jansonius, Smith & Staplin, 1964 Type species: Densosporites covensis Berry, 1937 Densosporites pseudoconfragosus n. sp. (Pl. XII, Fig. 4)

Holotypus: Specimen No. Z. Pb. N10; Pl. XII, Fig. 4. Stratum typicum: Westphalian A. Locus typicus: Chełm I, sample 38.

Derivatio nominis: Lat. pseudo = sham, falseness; on account of a certain similarity to the spores of Densosporites confragosus Leschik, 1959.

Diagnosis. — Microspore large. Y-figure not always visible. Central body and cingulum covered with fine knobs.

Material. — Twenty four well-preserved specimens. Dimensions (in μ):

	Z. Pb. N13	Z. Pb. N10	Z. Pb. N19
Complete diameter of spore	60	68.2	72
Diameter of central body	34	37.5	45
Diameter of knobs	12	1-3	13

Description. — Trilete microspores, triangular in outline with rounded corners or suboval. They consist of central body and cingulum, the largest

thickness of the latter occurring in the place where it contacts the central body of spore. Trilete rays, which is not always visible, reach the inner margin of cingulum. Both central body and cingulum are densely covered with knobs. Central body is dark-yellow and cingulum brown.

Remarks. — Microspores of Densosporites pseudoconfragosus n. sp. are most similar to D. confragosus Leschik, 1959, from which they differ in larger diameter, which in the last-named species amounts to 44 μ . In addition, there are considerable geographical and stratigraphic differences in the occurrence of these species. D. pseudoconfragosus occurs at Chełm from Namurian C to Westphalian A, whereas D. confragosus was described from Lower Permian of South-west Africa.

Occurrence. — Poland, Chełm I boring (samples 30, 38, 39, 154 and 207) — Namurian C to Westphalian A.

Genus Savitrisporites Bhardwaj, 1955 Type species: Savitrisporites triangulus Bhardwaj, 1955 Savitrisporites minor n. sp.

(Pl. X, Fig. 1)

Holotypus: Specimen No. Z. Pb. N 71; Pl. X, Fig, 1.

Stratum typicum: Westphalian A.

Locus typicus: Chełm I, sample 154.

Derivatio nominis: Lat. minor = small; on account of its relatively small dimensions.

Diagnosis. — Microspore small, trilete figure distinct. Y-rays thin, reaching cingulum.

Material. — One very well-preserved specimen. Dimensions (in μ):

Z. Pb. N71
Diameter of spore 44

Description. — Microspore triangular in outline, with rounded corners. Y-rays distinct, straight, without rolls and lips, reaching cingulum. Cingulum displaying the greatest thickness on the corners of spore. Exospore not uniform in thickness. Proximal surface more or less smooth, distal covered with irregular swellings. Cingulum densely covered with short spines. Spore thick-welled, dark tan-brown.

Remarks. — Microspore of S. minor n. sp. is most similar to those of S. triangulus Bhardwaj, 1955, from which it mostly differs in a smaller diameter which in S. triangulus amounts to $53-65 \mu$ and in S. minor — only to 44 μ . In addition, spores of S. triangulus are known only from Stephanian.

Occurrence. — Poland, Chełm I boring (sample 154) — Westphalian A.

Genus Gravisporites Bhardwaj, 1954

Type species: Gravisporites sphaerus (Butterworth & Williams, 1954) Bhardwaj, 1954

Gravisporites triangulatus n. sp.

(Pl. X, Fig. 4)

Holotypus: Specimen No. Z. Pb. N13; Pl. X, Fig. 4. Stratum typicum: Westphalian A.

Locus typicus: Chełm I, sample 38.

Derivatio nominis: Lat. triangulum = triangle; on account of a triangular outline of spore.

Diagnosis. — Microspore small, with a narrow cingulum.

Material. — One well-preserved specimen.

Dimensions (in μ):

	Z. Pb. N13
Diameter of spore	. 50
Width of Y-rays	. 11
Width of cingulum	. 5

Description. — Microspore triangular in outline, with a narrow massive cingulum (crassitudo) on the equator. Trilete rays very thick, slightly undulate, reach the inner margin of cingulum. Spore surface is covered with closely adhering granules. Spore dark-orange, cingulum and Y-rays brown.

Remarks. — Gravisporites triangulatus n. sp. is very similar to G. sphaerus (Butterworth & Williams, 1954) from which it differs however, in a much smaller diameter.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A.

Genus Knoxisporites (Potonié & Kremp, 1954) Neves, 1961 Type species: Knoxisporites hageni Potonié & Kremp, 1954 Knoxisporites sp. (Pl. X, Fig. 2)

Material. — One well-preserved specimen. Dimensions (in μ):

Description. — Trilete microspore, subtriangular in outline. Y-rays straight, thin, their length equals approximately 2/3 of the spore radius.
Sculpture in the form of rolls. One of the rolls rims along the entire equator, forming a sort of a cingulum. A triradiate roll with very wide arms, which are disposed obliquely to Y-rays, is situated on the proximal side. Between the arms of rolls and cingulum there are empty spaces, semicircular in shape. Radially diverging rolls, occurring on the distal surface of spore, are visible against the background of these spaces. Spore relatively thick, tan-brown.

Remarks. — Since only specimen of Knoxisporites sp. has been found in the Chełm I boring and since this spore is marked by a very complex structure, it was impossible to trace accurately all elements of sculpture. In this connection, it has been given no specific name.

Occurrence. — Poland, Chełm I boring (sample 154) — Westphalian A.

> Genus Pseudoannulatisporites n. gen. Type species: Pseudoannulatisporites polonicus n. sp.

Diagnosis. — Microspores consist of the central body and cingulum. The entire spores, together with cingulum, but except for the contact area, are closed within a bowllike coat which is relatively thick. Very often, spores are met with, which seem to be in the stage of flowing out of this coat. Sometimes, specimens are found completely devoid of such coat and, on the other hand, there are also empty coats, occurring separately.

Pseudoannulatisporites polonicus n. sp. (Pl. XI, Figs. 1—11)

Holotypus: Specimen No. Z. Pb. 035; Pl. XI, Fig. 8. Stratum typicum: Viséan. Locus typicus: Chelm I, sample 575. Derivatio nominis: polonicus — spores of this species were first found in Poland.

Diagnosis. — Microspores with a very variable equatorial outline, mostly triangular, oval or round, provided with a thick, smooth coat (perispore?). Cingulum covered with fine apertures.

Material. — A few thousand very well-preserved specimens. Dimensions (in μ):

	Z. Pb. 035					
Diameter of spore	.3 -	41.8	52.8	52.8		.977
Diameter of central body of spore 11.	.0 19.8	26.4	22.0	20.0	26.4	22.0
Width of coat 16.	.5	19.8	25.3	14-22	20.0	24.2
Diameter of spore						(
without coat	- 33.0	-	32.0		33.0	-
Width of equatorial cingulum 4,	,0 8.0		7.7	1.000	7.0	—

Description. - Microspores triangular, oval, round and, sometimes, very irregular in outline, trilete. Y-rays straight, reaching the inner margin of equatorial cingulum, mostly invisible because central body of spore is very thin and easily destructible. Spores consist of the central body, equatorial cingulum and coat which covers the entire spore, except for contact area. Thickness of coat is not uniform. Very often, spores seem to flow out of the coat. There are all transitory stages, i.e from spores completely closed within the coat, through those which gradually slip out of it, up to the stage in which spore is completely free of coat. Spores without coats and, separately, coats alone are also met with sometimes. Now and then, the coat is torn open and its trace is visible on two sides of the spore. Spore surface, which has a spongy appearance, is covered with multitude of fine apertures. Such apertures are also observed on cingulum, on which they occur near the inner margin, where they are arranged in one or two rows, or even irregularly scattered all over the surface of cingulum. In spores, closed within the coat, these apertures are disposed only near the central body where they occur, arranged in the form of a one- or two-row wreath. Sometimes, equatorial cingulum is not uniform, but contracted in one or two places. Spores, devoid of coat, are — almost in all cases — triangular in outline with rounded corners. The central body of spore is yellow, cingulum --dark-yellow or tan-brown, and coat — dark-brown to black.

Remarks. — Microspores Pseudoannulatisporites polonicus n. sp. have characters resembling those of a few species of spores. Spores, completely closed within the coat, are similar to Densosporites variabilis (Waltz) Potonié & Kremp, 1956, in which a row of apertures, surrounding the middle part of spore, occurs on cingulum. The difference consists in the fact that in spores of *P. polonicus* there occurs a coat, which mostly may be observed in the stage of slipping off from the spore surface. Specimens, completely closed within the coat, are relatively few, but such coat has never been recorded in spores of D. variabilis. Similar apertures, situated near the inner margin of cingulum, are known in Anulatisporites bacatus Dybová & Jachowicz, 1957, which have a smooth contact area and a cingulum uniform in thickness. Such species as A. coronarius, A. sacculus and A. coronatus, all of them described by Dybová and Jachowicz (1957a) have large apertures or a greater number of apertures on cingulum, but they do not have the coat. The stage in which the coat is slipped off half--way or in which coats are already empty, resembles the genus Torispora Balme. Finding single specimens, representing this stage, may cause an erroneous assignment of these specimens to the genus Torispora.

Occurrence. — Poland, Chełm I boring (samples 573, 575 and 580) — Viséan.

Anteturma **Pollenites** R. Potonié, 1931 Turma **Saccites** Erdtman, 1947 (= **Saccata** Naumova[,] 1937) Subturma **Disaccites** Cookson, 1947 Genus Sahnisporites Bhardwaj, 1954 Type species: Sahnisporites saarensis Bhardwaj, 1954 Sahnisporites cf. saarensis Bhardwaj, 1954 (Pl. XII, Fig. 3)

1954. Sahnisporites saarensis Bhardwaj; D. C. Bhardwaj, Einige neue Sporengattungen..., p. 522, Fig. 12.

1956. Sahnisporites saarensis Bhardwaj; R. Potonié & G. Kremp, Die Sporae..., p. 176.

Material. — One well-preserved specimen. Dimensions (in μ):

	<u>Z.</u> Pb. N11
Length of spore	. 88
Length of central body	. 44
Diameter of air-bladders	. 38.5

Description. — Microspore with two air-bladders, without triradiate figure. In the equatorial situation, it has a more or less elliptical central body with a fairly deep cleft, running through its center. Air-bladders, with a infrareticulate structure, are situated near each other, so that they nearly contact each other. Central body is brown, air-bladders — yellow.

Remarks. — Spore of S. cf. saarensis differs from those, described by Bhardwaj, in the occurrence in time. S. saarensis is known from Stephanian C, whereas the spore from Chełm comes from Westphalian A.

Occurrence. — Poland, Chełm I boring (sample 38) — Westphalian A.

Palaeobotanical Laboratory of the Warsaw University Warszawa, Żwirki i Wigury 93 February 1967

REFERENCES

- AGRALI, B. 1964. Valeur stratigraphique des genres Densisporites et Lycosisporites et leur utilisation pour l'établissement de subdivisions palynologiques dans le Houiller d'Amasra. — Ann. Soc. Géol. Nord. 84, 9-17, Lille.
- ARNOLD, C. A. 1950 Megaspores from the Michigan Coal Basin. Contr. Mus. Paleont. Michigan, 8, 5, 59-111, Ann Arbor.
- BALME, B. B. 1952. On some spore specimens from British Upper Carboniferous coals. Geol. Mag., 89, 3, 175-184, Hertford.
- BARTLETT, H. H. 1928. Fossils of the Carboniferous Coal Pebbles of the glacial drift at Ann Arbor. Papers Mich. Acad. Sci. Art. Lett., 9, 11-28, Michigan.
- BENNIE, J. & KIDSTONE, R. 1886. On the occurrence of spores in the Carboniferous formation of Scotland. Proc. Roy. Phys. Soc. Edinb., 9, 82-117, Edinburgh.

- BHARDWAJ, D. C. 1954. Einige neue Sporengattungen des Saarkarbons. N. Jb. Geol. Paläont. Mh., 11, 512-525, Stuttgart.
- 1955a. The spore genera from the Upper Carboniferous coals of the Saar and their value in stratigraphical studies. Palaeobotanist, 4, 119—149, Lucknow.
- 1955b. An approach to the problem of taxonomy and classification in the study of sporae dispersae. Ibidem, 4, 3-9.
- 1957a. The palynological investigations of the Saar coals. Palaeontographica, B, 101, 73-125, Stuttgart.
- 1957b. The spore flora of Velener Schichten (Lower Westphalian D) in the Ruhr Coal Measures. Ibidem, 102, 110-138.
- BOCHEŃSKI, T. 1936. O owocowaniach (szyszkach) niektórych lepidofytów znalezionych w karbonie produktywnym Polskiego Zagłębia Węglowego. — Roczn. Pol. Tow. Geol., 12, 193-240, Kraków.
- BOCHEŇSKI, T. 1939. On the structure of Sigillarian cones and the mode of their association with their Stems. 1-28, Kraków.
- BONET, M. C. & Dijkstra, S. J. 1956. Megasporas Carboniferas de la Camocha (Gijón). -- Estud. Geol., 12, 245-255, Madrid.
- BRZOZOWSKA, M. & ŻOŁDANI, Z. 1958. Uwagi o zasięgu stratygraficznym niektórych gatunków megaspor karbońskich. — Kwart. Geol., 2, 3, 515-531, Warszawa.
- BUTTERWORTH, M. A. 1964. Densosporites (Berry) Potonié & Kremp and related genera. C. R. V Congr. Int. Strat. Géol. Carb., 1049-1057, Paris.
- BUTTERWORTH, M. A. & WILLIAMS, R. W. 1958. The small spore floras of coal in the Limestone coal group of the Lower Carboniferous of Scotland. — Trans. Roy. Soc. Edinb., 63, 17, 355-392, Edinburgh.
- CHALONER, W. G. 1952. On Lepidocarpon waltoni sp. n. Ann. Mag. Nat. Hist., 12, 5, 572-582, London.
- 1953. On the megaspores of four species of Lepidostrobus. Ann. Botan., 17, 263-293, London.
- 1954. Mississippian megaspores from Michigan and adjacent States. Mus. Paleont. Univ. Mich., 12, 3, 23-35, Ann Arbor.
- 1958. Polysporia mirabilis Newberry, a fossils Lycopod cone. J. Paleont., 32, 1, 199-209, Menasha.
- 1962. A Sporangiostrobus with Densosporites microspores. Palaeontology, 5, 1, 73-85, London.
- CROSS, A. T. 1947. Spore floras of the Pennsylvanian of West Virginia and Kentucky. - J. Geol., 55, 3, 285-308, Chicago.
- DANZÉ, J., LEVET-CARETTE, J. & LOBOZIAK, S. 1964. Révision des spores du genre Tuberculatisporites Ibrahim du Bassin Houiller du Nord de la France. *Rev. Micropaléont.*, 7, 14-30, Paris.
- DIJKSTRA, S. J. 1946. Eine monographische Bearbeitung der karbonischen Megasporen. — Med. Geol. Sticht., Ser. C-III-1, 1, 1-101, Maastricht.
- 1952a. The stratigraphical value of megaspores. -C. R. 3 Congr. Strat. Heerlen, 1, 163-168, Maastricht.
- 1952b. Megaspores of the Turkish Carboniferous and their stratigraphical value. Rep. Int. Geol. Congr. 18 Sess., 10, 11-17, London.
- 1955a. La correlation des veines de charbon par les mégaspores. Publ. Assoc. Étud. Paléont., Sér. H, 21, 107-119, Bruxelles.
- 1955b. The megaspores of the Westphalian D and C. Med. Geol. Sticht., N. S., 8, 5-11, Maastricht.
- 1955c. Megasporas carboníferas españolas y su empleo en la correlación estratigráfico. — Estud. Geol., 11, 27/28, 277—354, Madrid.

- DIJKSTRA, S. J. 1955d. Some Brazilian megaspores Lower Permian in age and their comparison with Lower Gondwana spores from India. Med. Geol. Sticht., N. S., 9, 5-10, Maastricht.
- 1956. Lower Carboniferous megaspores. Ibidem, 10, 5-18.
- 1957. Über unterkarbonische Megasporen. Paläont. Ztschr., **31**, 1/2, 7-8, Berlin. DIJKSTRA, S. J. & PIÉRART, P. 1957. Lower Carboniferous megaspores from the
- Moscow Basin. Med. Geol. Sticht., N. S., 11, 5-19, Maastricht. DYBOVÁ, S. 1958. Granica namuru i westfalu w karbonie produktywnym obszaru ostrawsko-karwińskiego. — Kwart. Geol., 2, 3, 507-514, Warszawa.
- DYBOVÁ, S. & JACHOWICZ, A. 1957a. Mikrospory górnośląskiego karbonu produktywnego. 3-328. Warszawa.
- & 1957b. Strefy mikrosporowe w górnośląskim karbonie produktywnym. Kwart. Geol., 1, 192-212, Warszawa.
- GUENNEL, G. K. & NEAVEL, R. C. 1961. Torispora securis Balme: Spore or sporangial wall cell? — *Micropaleontology*, 7, 2, 207-212, New York.
- HACQUEBARD, P. A. & BARSS, M. S. 1957. A Carboniferous spore assemblage in coal from the South Nahanni River Area. Geol. Surv. Canada, 40, 1-63, Ottawa.
- HOFFMEISTER, W. S., STAPLIN, F. L. & MALLOY, R. E. 1955a. Mississippian plant spores from the Hardinsburg formation of Illinois and Kentucky. — J. Paleont., 29, 3, 327-400, Menasha.
- —, & 1955b. Geologic range of paleozoic plant spores in North America. Micropaleontology, 1, 1, 9-27, New York.
- HORST, U. 1955. Die Sporae dispersae des Namurs von West-Oberschlesien und Mährisch-Ostrau. Palaeontographica, B, 98, 137-236, Stuttgart.
- IBRAHIM, A. 1932. Beschreibung von Sporenformen aus Flöz Ägir. N. Jb. Miner. etc., Beil.-Bd., 67, B, 447-449, Berlin.
- 1933. Über die Sporenformen aus dem Flöz Ägir des Ruhrrevieres. Diss. Techn. Hochsch., 1-47, Würtzburg.
- ISHCHENKO, A. M. 1952. Atlas mikrospor i pylcy nižnekamennougolnych osadkov zapadnogo prodolženia Donbasa i ich značenie dla stratigrafii.— *Tr. Inst. Geol. Nauk AN USSR*, 3-184, Kiev.
- 1956. Spory. Ibidem, 261-293.
- 1958. Sporovo-pylcevoj analiz nižnekamennougolnych otloženij Dneprovsko-Doneckoj Vpadiny. — Ibidem, 3-187.
- ISHCHENKO A. M. & SEMENOVA, E. V. 1962. Megaspory kamennougolnogo vozrasta i ich stratigrafičeskoe znaczenie, 3-147, Kiev.
- JACHOWICZ, A. 1958. Problemy stratygraficzne w górnośląskim karbonie produktywnym w świetle badań mikrosporowych. — Kwart. Geol., 2, 483-506, Warszawa.
- 1960. Wyniki wiercenia w Chełmie (Badania sporowe). Biul. Inst. Geol., 165, 71-76, Warszawa.
- 1964. Nowe dane o występowaniu mikrospor i pyłku w osadach namuru północno-wschodniej części Zagłębia Górnośląskiego. — Ibidem, 184, 7, 193-223.
- 1966. Charakterystyka mikroflorystyczna osadów karbonu lubelskiego. Prace Inst. Geol., 44, 103—128, Warszawa.
- KALIBOVÁ, M. 1951. Megaspores of the Radnice coal measures zone of the Kladno--Rakovnik Coal Basin. — Sborn. Ústř. Úst. Geol., 18, 21-92, Praha.
- KEDO, G. J. 1958. Sporovo-pylcevaja charakteristika nižnich gorizontov karbona B.S.S.R. — Tr. Inst. Geol. Nauk BSSR, 1, 46-56, Minsk.
- KOREJWO, K. 1960a. Wyniki wiercenia w Chełmie (Szczegółowy profil wiercenia karbon). Biul. Inst. Geol., 165, 23-42, Warszawa.
- 1960b. Wyniki wiercenia w Chełmie (Karbon stratygrafia na podstawie makrofauny). — *Ibidem*, 165, 60-64.

- KOSANKE, R. M. 1950. Pennsylvanian spores of Illinois and their use in correlation. — Illin. Geol. Surv. Bull., 74, 7-128, Urbana.
- LESCHIK, G. 1959. Sporen aus den "Karru-Sandsteinen" v. Norronaub (Südwest--Afrika). — Senckenberg. Lethaea, 40, 1/2, 5-95, Frankfurt a. M.
- LISZKA, S. 1960. Wyniki wiercenia w Chełmie (Stratygrafia na podstawie mikrofauny). — Biul. Inst. Geol., 165, 64—70, Warszawa.
- LOOSE, F. 1932. Beschreibung von Sporenformen aus Flöz Bismarck, In: Potonié, R., Sporenformen aus den Flözen Ägir und Bismarck des Ruhrgebietes. — N. Jh Miner. etc., Beil.-Bd., 67, 126-164, Stuttgart.
- 1934. Sporenformen aus dem Flöz Bismarck des Ruhrgebietes. Arb. Inst. Paläobot. Petrogr. Brennst., 4, 3, 127-164, Berlin.
- LUBER, A. A. 1955. Atlas spor i pylcy paleozojskich otloženij Kazachstana. 3-126 Alma-Ata.
- LUBER, A. A. & WALTZ, J. E. 1938. Klassifikacija i stratigrafičeskoe značenie spor nekotorych kamennougolnych mestonachoždenij SSSR. — Tr. Centr. Nauč.-Issl. Geol. Razv. Inst., 105, 1-45, Moskva.
- NEVES, R. 1961. Namurian plant spores from the southern Pennines, England --Palaeontology, 4, 2, 247-279, London.
- 1964. Knoxisporites (Potonié & Kremp) Neves, 1961. C. R. 5 Congr. Int. Strat. Geol. Carb., 1063-1069, Paris.
- NOWAK, J. & ZERNDT, J. 1936. Zur Tektonik des östlichsten Teils des polnischen Steinkohlenbeckens. — Bull. Acad. Pol. Sci., Ser. A. 56-73, Kraków.
- OSHURKOWA, M. V. 1961. Megaspory iz kamennougolnych otloženij Karagandy. Paleont. Žurnal, 3, 109-121, Moskva.
- PIÉRART, P. 1956. Quelques mégaspores contenues dans les charbons stéphaniens des bassins le Blanzy et de Décazeville. Bull. Soc. Belg. Géol. Paléontol. Hydrol. 64, 3, 587-599, Bruxelles.
- 1957. Note préliminaire sur les mégaspores du Westphalien C supérieur en Campine belge. — Paläont. Ztschr., 31, 1/2, 46-52, Berlin.
- 1958a. Palynologie et stratigraphie de la zone de Neeroeteren (Westphalien C supérieur) en Campine belge. - Bull. Assoc. Étud. Paléont., 30, 1-112, Bruxellez.
- 1958b. L'utilisation des mégaspores en stratigraphie houillère. Bull. Soc. Belge Géol. Paléont. Hydrol., 67, 1, 50-78. Bruxelles.
- 1961. Les mégaspores du houiller de Kaiping (Chine.) Med. Geol. Sticht., N. S. 13, 39-44, Maastricht.
- 1963. Synopsis des mégaspores du Westphalien de la Belgique. Bull. Soc. Botan. Belg., 95, 231-252, Bruxelles.
- PLAYFORD, G. 1962. Lower Carboniferous microfloras of Spitsbergen. Palaeontology. 5, 3, 550-618, London.
- 1963a. Lower Carboniferous microfloras of Spitsbergen. Ibidem, 5, 1, 619-678.
- 1963b. Miospores from Mississippian Horton Group, Eastern Canada. Bull. Geol. Surv. Canada, 107, 1-47, Ottawa.
- POTONIÉ, R. 1954a. Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geol. Jb., 69, 111-194, Hannover.
- 1954b. Stellung der paläozoischen Sporengattungen im natürlichen System. Paläont. Ztschr., 28, 3/4, 103-139, Stuttgart.
- 1956. Synopsis der Gattungen der Sporae dispersae. Teil I. Beih. Geol. Jb., 23, 1-103, Hannover.
- 1958. Synopsis der Gattungen der Sporae dispersae. Teil II. Ibidem, 31, 1-114.
- 1960. Synopsis der Gattungen des Sporae dispersae. Teil III. Ibidem, 39, 1-189. POTONIÉ, R. IBRAHIM, A. & LOOSE, F. 1932. Sporenformen aus den Flözen Ägir

und Bismarck des Ruhrgebietes. — N. Jb. Miner. etc., Beil. — Bd. 67, B, 438-454, Stuttgart.

- POTONIÉ, R. & KREMP, G. 1955. Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie etc., I. – *Palaeontographica*, B, 98, 1-136, Stuttgart.
- & 1956a. Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie etc., Teil II. — Ibidem, 99, 85—191.
- -- & -- 1956b. Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie etc., Teil III. -- Ibidem, 100, 65-142.
- SCHEMEL, M. P. 1950. Carboniferous plant spores from Dagget County Utah. J. Paleont., 24, 2, 232-244, Menasha.
- SCHOPF, J. M. 1938. Spores from the Herrin (No. 6) coal bed in Illinois. Rep. Invest. Geol. Surv. Illinois, 50, 1-55, Urbana.
- SCHOPF, J. M. WILSON, L. R. & BENTALL, R. 1944. An annotated synopsis of paleozoic fossil spores and the definition of generic groups. — *Ibidem*, 91, 5-73.
- SPINNER, E. 1965. Westphalian D megaspores from the Forest of Dean Coalfield, England. — Palaeontology, 8, 1, 82-106, London.
- STACH, E. & ZERNDT, J. 1932. Die Sporen in den Flamm-, Gasflamm- und Gaskohlen des Ruhrkarbons. — Glückauf, 67, 35, 1118-1124, Essen.
- STAPLIN, F. L. 1960. Upper Mississippian plant spores from the Golata formation, Alberta, Canada. — Palaeontographica, B, 107, 1-40, Stuttgart.
- 1961. New plant spores similar to Torispora Balme. J. Paleont., 35, 6, 1227-1231, Menasha.
- STAPLIN, F. L. & JANSONIUS, J. 1964. Elucidation of some paleozoic Densospores. Palaeontographica, B, 114, 95-117, Suttgart.
- SULLIVAN, H. J. 1962. Distribution of miospores throughout coals and shales of the coal measures sequence exposed in Wernddu Claypit Caerphilly (South Wales). — Quart. J. Geol. Soc., 68, 353-373, London.
- SULLIVAN, H. J. 1964. Miospores from the Drybrook Sandstone and associated measures in the Forest of Dean Basin, Gloucestershire. — Palaeontology, 7, 3, 351-392, London.
- SULLIVAN, H. J. & NEVES, R. 1964. Triquitrites and related genera. C. R. 5 Congr. Int. Strat. Géol. Carb., 1079-1093, Paris.
- WICHER, A. 1934a. Sporenformen der Flammkohle des Ruhrgebietes. Arb. Inst. Paläobot. Petrogr. Brennst., 4, 165-212, Berlin.
- 1934b. Über Abortiverscheinungen bei fossilen Sporen und ihre phylogenetische Bedeutung. — Ibidem, 5, 87-95.
- WINSLOW, M. 1959. Upper Mississippian and Pennsylvanian megaspores and other plant microfossils from Illinois. Bull. Illinois State Geol. Surv., 86, 7-135, Urbana.
- ZERNDT, J. 1929. Megaspory z pokładu Izabela (w-wy łaziskie) w Trzebini. Roczn. Pol. Tow. Geol., 6, 302-313, Kraków.
- 1930a. Triletes giganteus n. sp., eine riesige Megaspore aus dem Karbon. Bull. Acad. Pol. Sci., Ser. B, 71-79, Kraków.
- 1930b. Megaspory z setnego pokładu w Libiążu. Ibidem, 39-70.
- 1931. Megasporen als Leitfossilien des produktiven Karbons. Ibidem, Ser. A, 12—183.
- 1932. Megasporen aus den Zwickauer und Lugau-ölsnitzenr Karbon. J. Berg. Hüttenw. Sachsen, 10-16, Freiberg.
- 1933. Versuch einer stratigraphischen Bestimmung von Steinkohlen-Gerölen der Karpathen auf Grund von Megasporenstudien. — Bull. Acad. Pol. Sci., Ser. B, 1-7, Kraków.
- 1934. Les mégaspores du Bassin Houiller Polonais. Acad. Pol. Sci. Lett., Trav. Géol., 1, 1-56, Kraków.

ZERNDT, J. 1937a. Les mégaspores du Bassin Houiller Polonais. — Ibidem, 3, 1-78.

- 1937b. Megasporen aus dem Westphal und Stefan in Böhmen. Bull. Acad. Pol. Sci., Ser. A, 583-599, Kraków.
- 1938a. Vertikale Reichweite von Megasporentypen im Karbon des Bassin du Nord.
 Roczn. Pol. Tow. Geol., 13, 21-30, Kraków.
- 1938b. Die Eignung von Megasporen als Leitfossilien. 3 Congr. Strat. Carb. Heerlen 1935, 1711-1732, Maastricht.

— 1940. Megasporen des Saarkarbons. — Palaeontographica, B, 84, 133-150, Stuttgart.
ŻOŁDANI, Z. 1960. Megaspory północno-wschodniej części Górnośląskiego Zagłębia Węglowego. — Biul. Inst. Geol., 155, 6, 121-152, Warszawa.

JADWIGA KARCZEWSKA

SPORY KARBOŃSKIE WIERCENIA CHEŁM I

Streszczenie

W pracy niniejszej opisano mikro- i megaspory z karbonu wiercenia Chełm I. Wiercenie to wykonane zostało w odległości 1 km od Chełma, nad rzeką Uherką. Miąższość utworów karbońskich wynosi ponad 600 m. Pobrano około 500 prób, z czego 200 przemacerowano na mikrospory i 200 — na megaspory. Stosowano metodę Schulzego, zmodyfikowaną przez Bocheńskiego oraz Dybovą i Jachowicza (1957). Łupki i piaskowce macerowano 40% kwasem fluorowodorowym. Pozytywny wynik maceracji w przypadku mikrospor uzyskano w 33 próbach, megaspor — w 18 próbach. Najbogatsze w spory były węgle i łupki węglowe. Przy obserwacji megaspor cienkobłonnych dobre wyniki dało oczyszczanie poszczególnych okazów przy pomocy ługu sodowego, który rozpuszcza substancje wypełniające spory. Po przemyciu tych spor i przeniesieniu do gliceryny, można je oglądać w świetle przechodzącym.

Opisano 34 gatunki należące do 10 rodzajów megaspor, z czego 8 nowych, a mianowicie: Calamospora magna n. sp., C. ovata n. sp., Lagenicula baculata n. sp., L. brevispinosa n. sp., L. clavata n. sp., L. maeandrica n. sp., Setosisporites dybovae n. sp., S. reticulatus n. sp., oraz 1 nową odmianę Lagenicula horrida hippocastaniformis n. var.

Oznaczono 168 gatunków mikrospor należących do 59 rodzajów. Opisano nowy rodzaj Pseudoannulatisporites n. gen. i 6 nowych gatunków mikrospor: Pustulatisporites irregularis n. sp., Lycospora intermedia n. sp., Densosporites pseudoconfragosus n. sp., Savitrisporites minor n. sp., Gravisporites triangulatus n. sp. i Pseudoannulatisporites polonicus n. sp.

Wykonano analizy mikrosporowe ilościowe (gatunkowe i rodzajowe), których wyniki przedstawiono graficznie (Tab. 2 i 3), oraz analizę megasporową jakościową (Tab. 1). Przeprowadzono korelację stratygraficzną z Zagłębiem Górnośląskim, zagłębiami radzieckimi i karbonem Spitsbergenu. Na tej podstawie wydzielono w karbonie wiercenia Chełm I następujące jednostki stratygraficzne: wizen dolny (?) i górny, namur A, B i C oraz westfal A (+B?).

Opisana kolekcja znajduje się w Zakładzie Paleobotaniki Uniwersytetu Warszawskiego, oznaczona symbolami Z. Pb. A — O.

ЯДВИГА КАРЧЕВСКА

КАМЕННОУГОЛЬНЫЕ СПОРЫ ИЗ БУРОВОЙ СКВАЖИНЫ ХЕЛМ І (ВОСТОЧНАЯ ПОЛЬША)

Резюме

В настоящей работе описано микро- и мегаспоры каменноугольных отложений из скважины Хелм I. Бурение проведено на расстоянии 1 км от г. Хелм, над рекой Угерка (восточная Польша). Мощность каменноугольных отложений более 600 м. Отобрано около 500 проб, из чего 200 было подвержено мацерации на микроспоры и 200 — на мегаспоры. Применялся метод Шульце (Schulze), измененный Бохеньским (Bocheński), а также Дыбовой и Яховичем (Dybová & Jachowicz, 1957). Сланцы и песчаники были мацерированы в 40% фтористоводородной кислоте. Положительный результат мацерации получено для микроспор в 33 пробах, для мегаспор — в 18 пробах. Наиболее богатые спорами были угольные пласты и углистые сланцы. При наблюдении мегаспор с тонкой экзиной, хорошие результаты дала очистка отдельных спор при помощи натрового щёлка, который растворяет субстанции выполняющие споры. После промывки этих спор и переноса в глицерин, можно наблюдать их в проходящем свете.

Описано 34 видов принадлежащих к 10 родам мегаспор, из чего 8 новых, а именно: Calamospora magna n.sp., C. ovata n.sp., Lagenicula baculata n.sp., L. brevispinosa n.sp., L. clavata n.sp., L. maeandrica n.sp., Setosisporites dybovae n.sp., S. reticulatus n.sp. и 1 новый вариетет: Lagenicula horrida hippocastaniformis n. var.

Определено 168 видов микроспор принадлежащих к 59 родам. Описано новый род Pseudoannulatisporites n. gen. и 6 новых видов микроспор: Pustulatisporites irregularis n. sp., Lycospora intermedia n. sp., Densosporites pseudoconfragosus n. sp., Savitrisporites minor n. sp., Gravisporites triangulatus n. sp., и Pseudoannulatisporites polonicus n. sp.

Сделано количественные микроспоровые анализы (видовые и родовые), а результаты представлено графически (Таб 2 и 3), а также качественный мегаспоровый анализ (Таб. 1). Проведено стратиграфическую корреляцию с верхнесилезским бассейном (западная Польша), советскими бассейнами и каменноугольными отложениями Шпицбергена. На этом основании выделено в карбоне буровой скважины Хелм I следующие стратиграфические единицы: нижний (?) и верхний визе, намюр А, В, С и вестфаль А (+В?).

Описанная коллекция, обозначенная символами Z. Pb. A-O. находится в Лаборатории Палеоботаники Варшавского Университета.

PLATES

Plate I

- Fig. 1. Calamospora sinuosa (Horst). Westphalian A (Z. Pb. B37); ×26.
- Fig. 2. C. laevigata (Ibrahim). Viséan, Westphalian A (Z. Pb. G39); ×40.
- Fig. 3. C. laevigata (Ibrahim). Viséan, Westphalian A (Z. Pb. 15); ×30.
- Fig. 4. C. ovata n. sp. Westphalian A (Z. Pb. G18); $\times 30$.
- Fig. 5. C. magna n. sp. Namurian A Westphalian A (Z. Pb. G7); ×30.
- Fig. 6. Calamospora sp. Westphalian A (Z. Pb. I 17); ×40.
- Fig. 7. Laevigatisporites glabratus (Zerndt). Westphalian A (Z. Pb. H2O); \times 30.
- Fig. 8. L. glabratus (Zerndt). Westphalian A (Z. Pb. G33); ×40.
- Fig. 9. Apiculatisporites breviapiculatus Danzé, Levet-Carette & Loboziak. Westphalian A (Z. Pb. H2); ×20.
- Fig. 10. A. parviapiculatus (Zerndt). Viséan (Z. Pb. 110); ×40.
- Fig. 11. Laevigatisporites fulgens (Zerndt), Viséan (Z. Pb. H9); ×40.

Plate II

Lagenicula crassiaculeata Zerndt (Viséan) Fig. 1. Z. Pb. G21. Fig. 2. Z. Pb. G6. Fig. 3. Z. Pb. D39. Lagenicula subpilosa (Ibrahim)

(Namurian A — Westphalian A)

Fig. 4. Z. Pb. G11. Fig. 5. Z. Pb. G10. Fig. 6. Z. Pb. G29.

Lagenicula baculata n. sp. (Westphalian A) Fig. 7. Z. Pb. G12. Fig. 8. Z. Pb. G28. Fig. 9. Z. Pb. G22. Fig. 10. Z. Pb. G13. Fig. 11. Z. Pb. G15.

All specimens \times 30

Plate III

Lagenicula horrida Zerndt (Namurian A - Westphalian A) Fig. 1. Z. Pb. G9; \times 30. Fig. 2. Z. Pb. G3; \times 30. Fig. 3. Z. Pb. G4; \times 30. Fig. 4. Z. Pb. G1; \times 30. Lagenicula horrida hippocastaniformis n. var. (Namurian A -- Westphalian A) Fig. 5. Z. Pb. G8; \times 30. Fig. 6. Z. Pb. G2 imes 30. Lagenoisporites rugosus (Loose) (Westphalian A) Fig. 7. Z. Pb. G32; \times 40. Fig. 10. Z. Pb. G14; \times 30. Lagenicula clavata n. sp. (Westphalian A) Fig. 8. Z. Pb. $I12; \times 30$. Fig. 9. Z. Pb. G31; \times 30. Lagenoisporites vastus (Dijkstra) (Viséan) Fig. 11. Z. Pb. J21; \times 30. Fig. 12. Z. Pb. J22; × 40.

Plate IV

- Fig. 1. Lagenicula brevispinosa n. sp. Westphalian A (Z. Pb. 120); \times 20.
- Fig. 2. L. maeandrica n. sp. Viséan (Z. Pb. H19); \times 30.
- Fig. 3. L. brevispinosa n. sp. Westphalian A (Z. Pb. H24); \times 30.
- Fig. 4. L. brevispinosa n. sp. Westphalian A (Z. Pb. H5); \times 30.
- Fig. 5. L. maeandrica n. sp. Viséan (Z. Pb. H8); \times 40.
- Fig. 6. Lagenoisporites cf. nudus (Nowak & Zerndt). Viséan (Z. Pb. II); X 30.
- Fig. 7. Lagenoisporites sp. 2. Viséan (Z. Pb. G37); \times 30.
- Fig. 8. Valvisisporites auritus (Zerndt). Westphalian A (Z. Pb. H37) imes 30.
- Fig. 9. Lagenoisporites? sp. 4. Westphalian A (Z. Pb. G26); \times 30.
- Fig. 10. Lagenoisporites sp. 1. Viséan, Westphalian A (Z. Pb. 19); imes 30.
- Fig. 11. Lagenoisporites? sp. 3. Westphalian A (Z. Pb. H17); \times 30.

Plate V

Lagenoisporites simplex var. levis (Zerndt) (Viséan) Fig. 1. Z. Pb. J19; \times 40. Fig. 2. Z. Pb. J14; \times 40. Fig. 3. Z. Pb. J15; imes 30. Fig. 4. Z. Pb. J9; \times 30. Fig. 5. Z. Pb. J5; \times 30. Fig. 6. Z. Pb. $J16; \times 40$. Fig. 7. Z. Pb. J3; \times 30. Fig. 8. Z. Pb. J17; \times 30. Fig. 9. Z. Pb. J18; \times 40. Setosisporites reticulatus n. sp. (Viséan) Fig. 10. Z. Pb. H7; \times 40. Setosisporites hirsutus (Loose) (Namurian B - Westphalian A) Fig. 11. Z. Pb. H30; \times 30.

Fig. 11. Z. Pb. H30; \times 30. Fig. 12. Z. Pb. H36; \times 30.

ACTA PALAEONTOLOGICA POLONICA, VOL. XII J. KARCZEWSKA, PL. V

Plate VI

Lagenoisporites simplex var. levis (Zerndt) (Viséan) Fig. 1. Z. Pb. J1; \times 40. Fig. 2. Z. Pb. J2; \times 40. Fig. 3. Z. Pb. J1; \times 30. Fig. 4. Z. Pb. J8; \times 30. Fig. 5. Z. Pb. J13; \times 40. Fig. 6. Z. Pb. J6; \times 30. Fig. 7. Z. Pb. J4; \times 30. Fig. 8. Z. Pb. J7; \times 30. Fig. 9. Z. Pb. J12; \times 40. Zonalesporites radiatus (Zerndt) (Viséan — Namurian A) Fig. 10. Z. Pb. G16; \times 30.

Fig. 10. 2. Pb. G16; × 50. Fig. 11. Z. Pb H18; × 30. Fig. 12. Z. Pb. H31; × 50.

Plate VII

- Fig. 1. Setosisporites praetextus (Zerndt). Viséan Westphalian A (Z. Pb. H34); \times 30.
- Fig. 2. S. praetextus (Zerndt). Viséan Westphalian A (Z. Pb. H39); \times 30.
- Fig. 3. Cystosporites strictus Dijkstra. Viséan (Z. Pb. H15); \times 30.
- Fig. 4. Setosisporites dybovae n. sp. Viséan-Namurian A (Z. Pb. H33) \times 60.
- Fig. 5. S. dybovae n. sp. Viséan Namurian A (Z. Pb. H38); ×30.
- Fig. 6. Setosisporites? sp. 1. Namurian A (Z. Pb. H32); \times 30.
- Fig. 7. cf. Setosisporites sp. 2. Viséan (Z. Pb. G34); \times 40.
- Fig. 8. Triangulatisporites triangulatus (Zerndt). Westphalian A (Z. Pb. H25); \times 30.
- Fig. 9. T. triangulatus (Zerndt). Westphalian A (Z. Pb. H21); \times 30.
- Fig. 10. Zonalesporites brasserti f. solida Dijkstra. Viséan (Z. Pb. G27); \times 30.
- Fig. 11. Z. brasserti f. solida Dijkstra. Viséan (Z. Pb. G25); ×30.
- Fig. 12. Z. brasserti f. solida Dijkstra. Viséan (Z. Pb. H23); \times 30.

Plate VIII

Zonalesporites brasserti (Stach & Zerndt) (Viséan — Westphalian A)

Fig.	1. Z. Pb. H26; \times 30.
Fig.	2. Z. Pb. H35; \times 30.
Fig.	3. Z. Pb. H27; $ imes$ 30.
Fig.	4. Z. Pb. G35; × 40.
Fig.	5. Z. Pb. H16; \times 30.

Cystosporites giganteus (Zerndt)

Plate IX

Cystosporites varius (Wicher) (Namurian C — Westphalian A) Fig. 1. Z. Pb. H14; \times 30. Fig. 6. Z. Pb. H40; \times 30. Fig. 8. Z. Pb. H13; \times 30.

Cystosporites verrucosus Dijkstra (Westphalian A)

- Fig. 4. Cystosporites sp. Westphalian A (Z. Pb. G23); \times 30.
- Fig. 5. Megaspora? Westphalian A (Z. Pb. I13); \times 30.
- Fig. 7. Setosisporites hirsutus var. brevispinosa f. I (Zerndt). Viséan (Z. Pb. I21); \times 40.
- Fig. 10. Apiculatisporites brevispiculus (Schopf). Namurian A, C, Westphalian A (Z. Pb. L31); \times 20.
- Fig. 11. Setosisporites hirsutus var. brevispinosa f. II (Zerndt). Viséan (Z. Pb. 124); × 40.
- Fig. 12. Triletes? sp. 2. Westphalian A (Z. Pb. G17); \times 20.
- Fig. 14. Zonalesporites superbus (Bartlett). Westphalian A (Z. Pb. I23); \times 20.
- Fig. 15. Apiculatisporites subspinus Danzé, Levet-Carette & Loboziak. Westphalian A (Z. Pb. L32); \times 20.
- Fig. 18. Calamospora magna n. sp. Namurian A, Westphalian A (Z. Pb. K2); \times 17.
- Fig. 19. Triletes sp. 1. Westphalian A (Z. Pb. 18); \times 30.

δ

Plate X

- Fig. 1. Savitrisporites minor n. sp. Westphalian A (Z. Pb. N71); \times 450.
- Fig. 2. Knoxisporites sp. Westphalian A (Z. Pb. N76); \times 470.
- Fig. 3. Lophotriletes cf. primitivus Ishchenko. Westphalian A (Z. Pb. N23); \times 450.
- Fig. 4. Gravisporites triangulus n. sp. Westphalian A (Z. Pb. N13); \times 500.
- Fig. 5. Lagenicula clavata n. sp. Westphalian A (Z. Pb. K3); \times 40.
- Fig. 6. Pustulatisporites irregularis n. sp. Viséan (Z. Pb. M86); \times 500.
- Fig. 7. Lycospora intermedia n. sp. (Namurian A Westphalian A), (Z. Pb. N18); × 540.
- Fig. 8. Setosisporites reticulatus n. sp. (Reticulum from distal surface of the spore). Viséan (Z. Pb. K12); \times 200.
- Fig. 9. Lagenicula brevispinosa n. sp. (Contact field with the knobs), Westphalian A (Z. Pb. K5); × 100.

Plate XI

Pseudoannulatisporites polonicus n. sp. (Viséan)

Fig.	1.	Z.	Pb.	$_{035; \times}$	530.
Fig.	2.	Z.	Pb.	034; $ imes$	520.
Fig.	3.	Z.	Pb.	035; $ imes$	470.
Fig.	4.	Z.	Pb.	034; $ imes$	470.
Fig.	5.	Z.	Pb.	035; $ imes$	470.
Fig.	6.	Z.	Pb.	035; $ imes$	470.
Fig.	7.	\mathbf{Z}_{\cdot}	Pb.	034; $ imes$	500.
Fig.	8.	Z.	Pb.	035; $ imes$	500.
Fig.	9.	\mathbf{Z}_{\cdot}	Pb.	035; $ imes$	50 0 .
Fig.	10.	Z.	Pb.	035; $ imes$	500.
Fig.	11.	Z.	Pb.	035; $ imes$	500.

Plate XII

- Fig. 1. Triquitrites cf. articulosus (Ishchenko). Viséan Namurian A (Z. Pb. M42);×500.
- Fig. 2. T. cf. articulosus (Ishchenko). Viséan Namurian A (Z. Pb. M44); ×420.
- Fig. 3.Sahnisporites cf. saarensis Bhardwaj. Westphalian A (Z. Pb. N11); ×500.
- Fig. 4. Densosporites pseudoconfragosus n. sp. Namurian C- Westphalian A (Z. Pb. N10); \times 550.
- Fig. 5. Calamospora sp. Westphalian A (Z. Pb. N11); \times 225.
- Fig. 6. Vestispora cf. lucida (Butterworth & Williams). Westphalian A (Z. Pb. N23); × 570.