A low diversity shallow water lingulid brachiopod-gastropod association from the Upper Ordovician of Kyrgyz Range

LEONID E. POPOV, JAN OVE R. EBBESTAD, AMANBEK MAMBETOV, and FARID KH. APAYAROV

A low diversity association made up of the lingulid *Tunisiglossa almalensis* Popov and Mambetov, sp. nov. and the gastropod *Ptychonema agyris* Ebbestad, sp. nov. is described from the Upper Member of the Almaly Formation at Kyrgyz Range, North Tien Shan, Kyrgyzstan/Kazakhstan. The specimens co-occur in dense coquinas, made up of different sized individuals, deposited in a shallow water, intertidal, and storm driven depositional environment. The lingulid shells display a completely reduced dorsal pseudointerarea typical of Glossellinae, and the smooth shell lacking fine external granulation, radial or pitted ornament, a small ventral pseudointerarea, and no dorsal median ridge place it in the hitherto monotypic *Tunisiglossa* known previously only from the Lower Ordovician (Tremadocian) Sanhar Formation of Libya. It compares with *Ectenoglossa sorbulakensis* that is widespread in the lower to middle Caradocian Anderken Formation of Chu-Ili Range in southern Kazakhstan. Gastropods of this age have not been reported earlier in Kyrgyzstan; neither can *Ptychonema* be compared with any taxon in the gastropod association earlier described from the contemporary Anderken Formation in Kazakhstan. *Ptychonema* is otherwise commonly associated with peri-Gondwana terranes, but the Late Ordovician dispersal pattern of the genus is unknown. Overall, however, the Upper Ordovician faunas of North Tien Shan show close similarities to contemporaneous faunas of the Chu-Ili terrane, which have strong biogeographic signatures linking them to the faunas of South and North China.

Key words: Brachiopoda, Gastropoda, Lingulida, Ordovician, Kazakhstan, Kyrgyzstan, Almaly Formation, palaeobiogeography, North Tien Shan.

Leonid E. Popov [Leonid.Popov@museumwales.ac.uk], Department of Geology, National Museum of Wales, Cathays Park, CF10 3NP, Cardiff, UK;
Jan Ove R. Ebbestad [jan-ove.ebbestad@pal.uu.se], Department of Earth Sciences, Program of Palaeobiology, Norbyvägen 22, S 752 36 Uppsala, Sweden;

Introduction

Central Asia is an amalgamation of accreted terranes (Şengör and Natal’ in 1996), the juxtaposition of which during the Palaeozoic is a matter of dispute. Critical faunal evidence is still in much demand to resolve original positions, a need to which this report of a Late Ordovician low diversity lingulid brachiopod-gastropod association from Kyrgyzstan contributes. The Upper Ordovician brachiopod fauna of Kyrgyz Range, North Tien Shan is known mainly from a single publication by Misius (1986) but there are no previous reports of gastropods. The present study describes a low diversity faunal association from the Upper Member of the Almaly Formation, including a lingulid *Tunisiglossa almalensis* Popov and Mambetov, sp. nov. and a gastropod *Ptychonema agyris* Ebbestad, sp. nov.

The Upper Ordovician (lower to middle Caradocian) Almaly Formation is exposed in the Almalyai basin, the eastern tributary of the Talas River, on the southern slope of Kyrgyz Range on both sides of the border between Kyrgyzstan and Kazakhstan (Fig. 1). Here it rests unconformably on granodiorites of the Almaly Complex intrusives, that have a U-Pb zircon date of 464 Ma (Kiselev 1999). The best section of the Almaly Formation is exposed between the Tuleusai and Almalyai rivers southwest of the height 1194.4 m on the Kyrgyz side of the border where it can be subdivided into two members (Fig. 2).

The basal 510 m of the Lower Member is made up of intercalating lilac and brownish-red sandstones with some units of conglomerates, while alternating lilac and green siltstones and argillites with some units of fine-grained sandstones are found in the upper 480 m. The Upper Member of
the Almaly Formation is about 795 m thick, and consists of intercalating greenish-grey siltstones and argillites with some units of fine grained sandstone and argillaceous limestone. The uppermost unit of the Lower Member and the Upper Member contain several fossiliferous horizons with low diversity benthic fauna represented mainly by lingulids and gastropods (Fig. 2).

The uppermost part of the Amaly Formation is well exposed on the Kazakh side of the border on the east side of the Nogaisai Rivulet, about 5.25 km north-east (azimuth 15°NE) of the zero point of the measured section, where Olga I. Nikitina (personal communication 2003) identified the brachiopods *Eodalmanella extra* Popov, 1985 and *Mabella conferta* (Popov, 1985), as well as the trilobite *Lonchodomas tecturmasi* Weber, 1948, characteristic also of the lower to middle Caradocian Anderken Formation of the Chu-Ili Range in southern Kazakhstan (Popov et al. 2002).

The best fossiliferous exposures of the Upper Member of the Almaly Formation on the northern side of Almalysai about 2 km south of the measured section (localities 509 with geographical coordinates 42°49′19″N, 71°41′27″E and 510 with geographical coordinates 42°49′20″N, 71°41′26″E, WGS 84) contain abundant, low diversity faunal assemblage represented mainly by lingulids and gastropods (Fig. 2).

Institutional abbreviations.—BMNH, Natural History Museum, London, UK; NMW (accession number 98.66G), National Museum of Wales, Cardiff, UK.

Other abbreviations.—Abbreviations in tables of measurements and in the text are: Lv, Ld, maximum sagittal ventral and dorsal valve length; W, maximum width; Iw, width of pseudointerarea; Vl, length of visceral area; X, mean; S, standard deviation from the mean; min, minimum value; max, maximum value; N, number of measured or counted specimens. Measurements of whorl expansion rate (W) are based on Raup (1966). Inclination (E) of the whole apertural plane refers to elevation angle of Vermeij (1971).

Systematic palaeontology

Fig. 3. The lingulid brachiopod *Tunisiglossa almalensis* Popov and Mambetov, sp. nov. from the Almaly Formation, Caradocian (Upper Ordovician) of Kyrgyz Range. A. NMW 98.66G.869, ventral internal mould. B. NMW 98.66G.871, ventral valve, exterior. C. NMW 98.66G.865, dorsal valve exterior. D. NMW 98.66G.866, dorsal valve, exterior. E. NMW 98.66G.860–862, cluster of three disarticulated valves on a bedding surface. F. NMW 98.66G.872, dorsal valve, interior, latex cast. G. NMW 98.66G.870, holotype, dorsal valve, interior, latex cast showing position of muscle scars (tm., transmedian; o.l., outside lateral; a.l., middle lateral; c.m., central; anterior lateral) and proximal parts of dorsal vascular media (*v.m.*). H. NMW 98.66G.873, ventral valve, exterior, latex cast (*H*₁) and ventral internal mould showing umbonal muscle scars (*u.m.*) (*H₂*). I. NMW 98.66G.867, ventral valve, interiors showing position of pedicle nerve impression (*p.n.*) and NMW 98.66G.868, dorsal valve interior. Scale bars 2.5 mm.
Class Lingulata Gorjansky and Popov, 1985
Order Lingulida Waagen, 1885
Superfamily Lingulooidea Menke, 1828
Family Obolidae King, 1846
Subfamily Glossellinae Cooper, 1956
Genus *Tunisiglossa* Massa, Havlíček, and Bonnefous, 1977

Type species: *Tunisiglossa tripolitanea* Massa, Havlíček, and Bonnefous, 1977 by original designation; Lower Ordovician, Tremadocian, Libya.

Tunisiglossa almalensis Popov and Mambetov, sp. nov. Figs. 3, 4.

Derivation of the name: After the type locality near the Almalysai River.

Holotype: NMW 98.66G.870, Fig. 3G, dorsal internal mould (L = 9.8 mm; W = 8.4 mm; Vl = 6.2 mm).

Type locality: Locality 509, northern side of Almalysai River, Kyrgyz Range, Kazakhstan.

Type horizon: Upper Member of Almaly Formation, Caradocian (Upper Ordovician).

Material.—The holotype and paratypes: 36 ventral and 42 dorsal valves from sample 509 (specimens NMW 98.66G.860–869; 871–945); 6 ventral and 4 dorsal valves from sample 510 (specimens NMW 98.66G.960–969).

Diagnosis.—A species of *Tunisiglossa* with a shell elongate oval in outline, about 140% as long as wide and a small ventral interarea less then half as wide as the valve; ventral interior with visceral area about half valve length bordered anteriorly by a low rim; ventral umbalonal muscle scars paired, situated on the ends of slightly raised muscle scars; dorsal interior with long, slightly divergent vascular media; differs from *Tunisiglossa tripolitanaea* Massa, Havlíček, and Bonnefous, 1977 in having a less elongated oval, rather than rectangular shell outline, well defined and slightly raised ventral umbalonal muscle scars and a low rim bounding anteriorly a ventral visceral area.

Description.—Shell elongate oval to sub-rectangular, about 140% as long as wide with maximum width about mid-length. Ventral valve gently and evenly convex with the apical angle about 90–100°. Ventral pseudointerarea narrow, triangular, slightly less than half as wide as the valve, bisected by a narrow, deep pedicle groove. Ventral propareas raised above the valve floor, bearing well defined flexure lines. Dorsal valve evenly convex with a thickened posterior margin lacking pseudointerarea, slightly shorter than ventral valve, about 130% as long as wide. Larval and postlarval shell smooth, ornamented with fine growth lines.

Ventral valve interior with subtriangular visceral area about half valve length, bounded anteriorly by indistinct rim slightly raised above the valve floor and bisected by a pair of slightly divergent furrows representing a pedicle nerve impression (Fig. 3I). Umbalonal muscle scars paired, forming elongate, slightly divergent muscle tracks on both sides of the pedicle nerve impression (Fig. 3H1, H2). Other muscle scars and mantle canals not impressed. Dorsal valve interior with visceral area about 55% as long as the valve. Scars of outside lateral, anterior lateral and middle lateral muscles situated on bands of slightly thickened shell along posterolateral margins of the valve (Fig. 3G). Central muscle scars elongate suboval, situated on anterior terminations of fine, elongate subtriangular muscle tracks divergent from the apex. Small paired scars if anterior lateral muscles occupying a short anterior projection of dorsal visceral area. *Vascula media* long, slightly divergent.

Measurements (in mm).—Ventral valves: Lv = 11.3; S = 1.42; min = 8.5; max = 13.4; N = 32; W = 8.3; S = 1.5; min = 6.2; max = 10.2; N = 32; Lv/W = 140%; S = 15.2; min = 115%; max = 181%. Dorsal valves: Ld = 10.1; S = 1.25; min = 8.4; max = 13.8; N = 32; W = 8.5; S = 0.87; min = 6.7; max = 10.8; N = 32; Ld/W = 127%; S = 9.0; min = 112%; max = 148%; Vl/L = 54%; S = 8.1; min = 43.5%; max = 62%, N = 5.

Remarks.—The lingulid shells from the Almaly Formation have paired umbalonal muscle scars, symmetrically arranged muscle scars in both valves and paired dorsal *vascula media* proving their assignation to the family Obolidae (Fig. 4). They are also characterised by the completely reduced dorsal pseudointerarea typical of Glossellinae. Among genera presently assigned to that subfamily only *Tunisiglossa* Massa, Havlíček, and Bonnefous, 1977 is characterised by a smooth shell lacking fine granulation on the shell surface, radial or pitted ornament, has very small ventral pseudointerarea and no dorsal median ridge (for details, see Holmer and Popov 2000). The only other known species of the genus is its type species *Tunisiglossa tripolitanaea* Massa, Havlíček, and Bonnefous, 1977 from the Lower Ordovician, Tremadoc Sanhar Formation of Libya. *Tunisiglossa almalensis* differs from it in having a less elongated oval, rather than rectangular shell.

Fig. 4. The lingulid brachiopod *Tunisiglossa almalensis* Popov and Mambetov, sp. nov. from the Almaly Formation, Caradocian (Upper Ordovician) of Kyrgyzstan. Schematic representation of ventral (A) and dorsal (B) valve interior showing position of muscle scars, mantle canals and a pedicle nerve impression.
outline, well defined and slightly raised ventral umbonal muscle scars and a low rim bounding anteriorly a ventral visceral area. It is likely that a simple shell morphology that characterises *Tunisiglossa* is more widely spread among the Ordovician obolides, and some poorly known taxa usually referred to *Ectenoglossa, Lingulella*, or *Pseudolingula* may belong to *Tunisiglossa*.

Tunisiglossa almelenis has some external similarity to *Ectenoglossa sorbulakensis* Popov, 1980 (see also Popov et al. 2002), that is widespread in the lower to middle Caradocian Anderken Formation of Chu-Ili Range in Southern Kazakhstan, however, the later species has more elongated shell and a fine dorsal median ridge.

Class Gastropoda Cuvier, 1797
Order Archaeogastroda Thiele, 1925
Family Holopeidae Wenz, 1938

Remarks.—Wagner (2002) emphasised a primitively expressed U-shaped sinus and simple growth lines for his “Holopeines” subclade within a “Raphistomatid” clade (informal notation, as indicated by the quotes; see Wagner 2002: 16). Traditionally, a number of Palaeozoic anisostrophically coiled gastropods showing these characters would be classified within the Late Cambrian to Early Ordovician Sinuopeidae Wenz, 1938. Many of these genera are now placed in the family Holopeidae Wenz, 1938 (e.g., *Raphistoma* Ulrich and Scofield, 1897; *Pachystrophe* Perner, 1903; *Sinutrops* Perner, 1903; *Umbospira* Perner, 1903; *Holopea* Hall, 1847), and all are younger than the late Arenigian (Wagner 2002). The genus discussed here, *Pycthonema* Perner, 1903, is placed in Holopeidae by association with morphologically similar mid Ordovician to Silurian genera with a U-shaped sinus; Horný (1997) placed it within Eotomariidae Wenz, 1938.

Genus *Pycthonema* Perner, 1903

Type species: *Pycthonema nigrum* Barrande in Perner, 1903: pl. 57: 16–19 and their figure caption; by monotypy. Middle Ordovician (Béroum) Zořany Formation at Praha-Šlařnice, Barrandian Area, Bohemia, Czech Republic.

Remarks.—Knight (1941) placed *Pycthonema* with some doubt in the synonymy of *Umbospira* Whitfield, 1886. The circumstances surrounding this decision are well explained by Knight (1941) and Horný (1997), and will not be repeated here. However, following studies of toptype material and similar specimens from the Anti-Atlas of Morocco, Horný (1997) was able to confidently re-establish the genus. Species of the genus are typically widely spread in the Early Palaeozoic Mediterranean Province, mainly from the Bohemian part of the Czech Republic, Armorica (Spain, Portugal, and France), and Anti-Atlas, Morocco (see Horný 1997 for references). Commonly, several tens to hundreds of specimens may occur on bedding planes or in nodules, though preservation is highly variable (Radvan J. Horný, personal communication 2005).

Four species are known from the Mediterranean Province: *Pycthonema nigrum* from the Zahofany Formation (Caradocian) in the Barrandian area, Czech Republic; *P. bussacense* (Sharpe, 1853) from the Llanvirnian to Dobrotiva (Darriwilian) of Portugal, Spain, and France (see Horný 1997: 55 and references); *P. desideratum* (Barrande in Perner, 1903) from the Llanvirnian Šárka Formation and the Dobrotilá Formation (Dobrotiva) in the Barrandian area, Czech Republic; *P. marocanum* Horný, 1997, from the Taclilla Formation (Llanvirnian), Anti-Atlas, Morocco. Horný (1997) considered that *P. desideratum* may be a junior synonym of *P. bussacense*, but lacked access to type and comparative material for a detailed study.

Abundant specimens of *Sinuopea?* sp. were recorded from the shallow water deposits of the Reedsville Formation (Cincinnatian), central Appalachians (Bretsky 1970). The species is large, 35 mm high, with at least five whorls of uniform expansion rate. A distinct U-shaped sinus is developed with its deepest part (ab-aperturely) at the periphery of the evenly rounded whorl. These features seem to place the taxon with *Pycthonema* as currently understood, to which it is here transferred. Museum material of this species at the Yale Peabody Museum has not been studied, so details of the aperture morphology and early whors are unknown. Both in size and morphology the species is comparable to the type species *P. nigrum*, though the American form is much younger. Inclusion of the species from Kyrgyz Range, described here from the Almaly Formation (Caradocian) in the western Kyrgyz Range, provides the second occurrence of *Pyctohonema* outside the Mediterranean Province.

Perner (1903) described several Silurian Gondwana genera (i.e., *Horistostoma, Sellinema, Turbomaria*) with shallow U-shaped sinuses. These were considered junior synonyms of *Umbospira* Perner, 1903 by Wagner (2002) and placed in the Holopeidae. The affinity of these dominantly Silurian forms with *Pyctohonema* is unclear and remains to be studied (Radvan J. Horný, personal communication 2005), and any Ordovician occurrences should be scrutinized in the light of the resurrection of *Pyctohonema*. For instance, a common, minute species of *Turbomaria* was reported from the Late Ordovician Boda Limestone of Sweden (Gubanov et al. 1999). This has an anomphalous shell of four whors, steep and weakly convex whorl profile with the periphery positioned low on the whorl, and a shallowly convex base. A shallow U-shaped sinus is placed somewhat above the periphery of the whorl. Other Ordovician occurrences of *Tur-
botomaria have not been reported, but Sellinema? sp. was identified from the Late Ordovician on Read Island, Canadian Arctic (Miller and Youngquist 1947). This species is comparable in size and age with the Cincinnatian Ptychonema sp., and was described as having a rounded sinus. Type material in the Yale Peabody Museum has not been investigated, so affinities with respect to Ptychonema or the predominantly Silurian Umbispira (synonym Sellinema) remain open. Furthermore, Horný (1997) predicted that several Ordovician species allied with Mourlonia de Koninck, 1883 may belong to Ptychonema. However, as presently understood, Ptychonema is restricted to the six Ordovician species noted above.

Ptychonema agyris Ebbestad, sp. nov.

Figs. 5, 6, 7.

Derivation of the name: From Greek agyris, meaning gathering, pertaining to the occurrence in coquinas, whether fortuitous or not.

Holotype: A near complete specimen with patches of shell preserved (NMW 98.66G.946; Fig. 5A–H). Preserved height and maximum width of the specimen are both 9.0 mm.

Type locality: Locality 510, northern bank of the Almaly Gorge, western Kyrgyz Range, Kazakhstan.

Type horizon: Upper Member of Almaly Formation, Caradocian (Upper Ordovician).

Paratypes: A small specimen (NMW 98.66G.947, Fig. 5J) with nearly complete spire, a nearly complete specimen where the outline of the outer lip is preserved (NMW 98.66G.948, Fig. 5J–L), a partial spire with initial bulbous part of infilling preserved (NMW 98.66G.949, Fig. 5M, N), a specimen with partially preserved aperture (NMW 98.66G.950, Fig. 6A), base of a specimen (NMW 98.66G.951, Fig. 6B) with shell preserved; a partial last whorl with shell intact (NMW 98.66G.952, Fig. 6C); two cross sections (NMW 98.66G.953, Fig. 6D; NMW 98.66G.954, Fig. 6E). All specimens were prepared out of the slab from where the holotype came.

Other material.—The shell is extremely common in the type area and forms coquinas of different sized specimens, together with the Tunisiglossa almalensis (see Fig. 2 for distribution).

Diagnosis.—A species of Ptychonema with four whorls that differs from other species of the genus by having a strongly rounded, parabolic whorl profile. It shares a small size and differs from other species of the genus in this respect. It differs from P. marocanum in having more strongly curved growth lines on the upper whorl surface, and by having a less inclined and thicker inner lip. The nature of the inner lip also differs from that of the other species of the genus.

Description.—Shell turbiniform with 4 whorls of moderate whorl translation (W = 0.5). The earliest whorl(s) are abandoned and the apex is filled, giving a sunken and tapering infilling of the first open part of the conch. The conch is slightly wider than it is high, with an apical angle of about 90°. Whorls are evenly and strongly rounded, parabolic in profile, nearly flat at the incised sutures and with a corresponding low profile of the evenly rounded base. Successive whorls overlap at lower 1/3 of whorl height. The shell is anomphalous. Ornamentation consists of fine growth lines only; they are prosocline on the upper whorl surface, sweeping strongly back abaperturally into a wide, symmetrical, or nearly symmetrical, U-shaped sinus. Most of the sinus is placed slightly above the periphery, and is about as wide (axial direction) as it is deep (abaperturally). In some specimens a slightly raised zone (spirally) is associated with the position of sinus. On the lower whorl surface the growth lines sweep strongly forward, with the most anterior point (abaperturally) of the projection at lower 2/3 of whorl height. The growth lines turn more orthocline toward the base, but they are slightly excavated (curved) at the inner-margin base (viewed ventrally). The aperture is tangential, with a low apertural angle (E ≈ 10°). The outer apertural lip is thin with only slight thickening at the basal part, and a thicker inner margin. Inner margin slightly curved, but essentially parallel to axis of coiling. A single pedal muscle scar is found at the base of the whorl at the umbilical margin, about half a whorl back (the abapertural boundary of the scar is concealed by preserved shell), and curving adaperturally for a short distance. The scar is elongated, widening adaperturally where the margin forms a weak asymmetric arch projecting...
furtherst adaperturally closest to the aperture. Four marginal lobes are developed at the adapertural part, the broadest near the umbilicus with three lobes of about equal width away from the umbilicus.

Remarks.—With its rounded, tangential aperture Pychonema agyris should in life position have had the apertural plane parallel to the substrate, accompanied by a high degree of inclination of the axis of coiling (Vermij 1971; Linsley 1977). However, the inclination of the axis of coiling in P. agyris is very low, as indicated by the low angle (E) of the apertural plane, and this is contrary to geometric expectations (Fig. 7C, D). This arrangement requires some amount of regulatory detorsion to achieve balance of the shell. Regulatory detorsion effectively ensures that the centre of gravity of the shell is over the mid-line of the foot by reducing the angle between the mid-axis of the foot and the axis of coiling (Linsley 1977; law of shell balance). Inevitably, with such a configuration, the emargination (i.e., the sinus) will not have an anterior position since it is positioned largely above the periphery of the whorl (Fig. 7C, D). This is as well contrary to geometric expectations for emarginations in shells of anisostrophic coiled gastropods (Linsley 1977; law of re-entrants). A steep apertural angle in Palaeozoic gastropods is usually associated with a radial aperture, held normal to the substrate (Linsley 1977). However, Isakar et al. (1991) recognized a pseudo-tangential aperture in the large Silurian gastropod Horologium, essentially giving the same morphological arrangement as in a shell with a radial aperture.

The abandoned apex is characteristic of Pychonema agyris, but also seems to be present in P. marocanum (personal observation by JORE, November 2005); the character may be shared among all species of the genus (see discussion of P. bussacense below). Filled apices are as well seen in other distantly related genera such as Palliseria, Lytospira, and Hormotoma, but these differ in that the infilling (internal mould) of the initial open shell area is bulbous. In Pychonema agyris this part is depressed and tapering (Fig. 5l, M, N). Given that the shell in this species is thin, the internal mould may reflect the original shape of the initial whorl thus indicating the presence of a heterostrophic submerged protoconch. Heterostrophy is characterized by a change from hyperstrophic growth of the protoconch to orthostrophic growth at the onset of the teleconch, typical for members of the subclass Heterostropha (see Bandel 1994). The oldest undoubted heterostrophic gastropod is known from the Lower Ordovician (Fryda and Rohr 2006). Previously, the oldest form was described from the Devonian (Fryda and Blodgett 2001; Bandel and Heidelberger 2002), but an unnamed specimen was also depicted from the Late Ordovician Boda Limestone of Sweden by Gubanov et al. (1999). Without the actual protoconch preserved in P. agyris a heterotrophic affiliation is not unequivocal, but because of the suggestive direction of the initial coiling the protoconch is unlikely to compare to a large bulbous archaeogastropod-type. It is, however, prudent to keep in mind that variation of protoconch morphology is evident within the Archaeogastropoda, for instance exemplified by the Cirroidea, and that the range and variation of assorted open coiled protoconch morphologies are still largely unexplored (see Fryda 1999; Fryda and Rohr 2004).

The species from Kyrgyz Range is similar to Pychonema marocanum Horný, 1997, from Morocco in the small size of the shell, though maximum size is about 30% larger (height about 9 mm vs. 6 mm in the Moroccan species). Other similarities are in number of whorls, the anomphalous shell, and the conch being wider than high. Pychonema agyris differs noticeably in the more strongly rounded whorls, the growth lines that sweep more strongly back on the upper whorl face, a less inclined and thicker inner lip. The sinus may also be deeper in the species from Kyrgyz Range. Horný (1997), on the other hand, described considerable variability of this character in Pychonema, ranging from a short slit making a bordered selenizone, a sinus with a weakly defined pseudo-selenizone, or a simple, sometimes raised, band-like spiral zone. In Pychonema marocanum the variation is manifested by a weakly defined pseudo-selenizone that may be associ-
ated with a raised zone that is rarely bounded by spiral lines and with highly irregular lunulae where such can be distinguished. Even with the limited material prepared for description of the species from Kyrgyz Range, a raised zone associated with the sinus is sometimes evident (Fig. 6C), and there is also variability in the strength of the growth lines (for example Fig. 5G). Anything approaching a pseudo-selenizone, however, is not recognised in Ptychonema agyris.

Differences in width and depth of the sinuses and size differences set both Ptychonema agyris and P. marocanum apart from the other recognised species of Ptychonema. Similarities exist between the species from Kyrgyz Range and the Cincinnatian Ptychonema sp. in the whorl profile, but with a more pronounced shoulder-like upper whorl surface in the American species. Some of the variation though may be owing to larger size, continuous ontogenetic change, and taphonomy. The sinuses in both species are placed high on the whorl, though it is narrower and less deep in the American Ptychonema sp. In this it compares to the type species Ptychonema nigrum Barrande in Perner, 1903, as well as P. bussacense (Sharpe, 1853) and P. desideratum (Barrande in Perner, 1903). These three species are all considerably larger than both Ptychonema agyris and P. marocanum, and seem to develop a better defined pseudo-selenizone, with a less deep sinus.

Similarities among the three large species are many, and Horný (1997) considered that P. desideratum may be a junior synonym of P. bussacense. In the Natural History Museum, London, three specimens (BMNH Pg3983, Pg3985, Pg3987) labelled Pleurotomaria bussacensis Sharpe from Portelo de Leredo in the Serra de Bussaco were studied, which lend support to this suggestion (assessment of the type material is still needed to judge this matter). These partially preserved specimens are from the type area of the species and seem to conform to the description of the species by Sharpe (1853), as well as the description and figure of P. desideratum given by Horný (1997). All specimens are large (between 20 and 40 mm across), with five (?) whorls, a wide and not very deep sinus that is raised on a spiral zone in one specimen (BMNH Pg3983). The shells seem to be narrowly phaneromphalous or even anomphalous. In BMNH Pg3985 the apex was clearly abandoned, with preservation similar to that seen in Ptychonema agyris (Fig. 5M, N).

Vostokova (1956) described gastropods from the comparable Anderken Formation and the Otar “Horizon” of the Chu-Ili Range in Kazakhstan. Most diverse where a lophospirid assemblage preserved in sandstones and siltstones, and a Maclurina assemblage found in limestone. In the argillaceous sediments Latitaenia kasachstanica Vostokova, 1956 dominates numerically, but neither this nor any of the other species described by Vostokova (1956) can be compared to Ptychonema. Part of the reason may be heterogeneous dispersal of the assemblages, and the more shallow nature of the deposits containing Ptychonema.

Discussion and results

Ecology and deposition.—In the Almaly Formation brachiopods are usually preserved as accumulations of disarticulated valves on the bedding surfaces of greenish-grey, fine-grained sandstones and siltstones whereas gastropods occur mainly in thin shell beds about 10–30 mm thick. Sedimentological features such as wave ripple marks, bidirectional cross-bedding and tidal channels preserved in the fossiliferous units suggest shallow marine deposition nearshore. Sporadic occurrences of mud cracks suggest that in part sediments were deposited intermittently.

None of the lingulid specimens were preserved in life position. Their infaunal mode of life, however, can be inferred from observations on other Ordovician taxa of the subfamily Glossleinae (see Pickering 1984) and have also been inferred for species of that subfamily from the Ordovician of Bohemia (Mergl 2002). The specimens of Tuniciglossa almalensis are preserved in fine grained sands that are considered as a perfect substrate for infaunal burrowing by recent lingulids (Emig 1997).

Observations on taphonomy of recent lingulid shells also suggest that if exposed, they have a low fossilization potential and their deterioration on a sea bed surface requires only a matter of a few weeks. Therefore accumulations of disarticulated lingulid shells on bedding surfaces can be attributed to desalination of nearshore waters, significant increase of sedimentation rate and influx of coarse-grained sediments generated by strong seasonal storms and rains (Emig 1986) that cause exposure, then a catastrophic death and rapid burial of the animals. In the studied localities sandstone beds rich in disarticulated lingulid shells are associated with 10 to 30 mm thick shell beds formed by accumulation of the gastropod Ptychonema. It is likely that deposition of gastropod coquinas occurred during the same storm event that caused the mortality of Tuniciglossa almalensis and rapid burial of their disarticulated valves. Very similar patterns were recently described by Popov et al. (2002) for the Ectenoglossa Association from the lower to middle Caradocian Anderken Formation of the Chu-Ili Range in South Kazakhstan, a low diversity association dominated by the lingulid Ectenoglossa sorbulakensis Popov, 1980. It occurs in medium- to coarse-grained sandstones with sub-horizontal and cross-bedded stratification, where brachiopods are often preserved as accumulations of disarticulated valves on the bedding surfaces. However, on a few occasions, occurrences of the conjoined valves in burrows were also observed. The units with lingulids also contain coquinas storm beds formed by the shells of gastropod and bivalved molluscs, but they usually do not co-occur together with lingulids. Coquinas of the gastropod Latitaenia kasachstanica Vostokova, 1956 are especially prominent in the siliciclastic sediments, but are replaced by a different gastropod fauna in the limestone facies (Vostokova 1956). It is therefore likely that the lingulide-gastropod association from the Almaly Formation and the Ectenoglossa As-
association from the Anderken Formation inhabited an environment of mobile sands deposited on a tidal flat nearshore, partly intertidally that was affected by seasonal storms possibly accompanied by strong rains.

Communities with similar depositional and faunal composition found in the Silurian were referred to as the *Turbocheilus* community by Boucot (1975, 1999) and Rohr (1999), and considered indicative of a brackish to estuarine, or possibly lagoonal conditions (Bradfield 1999). Other species of the gastropod *Ptychonema* are as well frequently found in coquinas or abundantly occurring on bedding planes (Horný 1997; Bretsky 1970; this paper), but though the taphonomic preservation of these species may seem to be similar the depositional settings seems to vary. The Cincinnatian *Ptychonema* sp. is common in a restricted belt in the Central Appalachians, associated with the gastropod *Lophospira* and a *Sowerbyella–Onniella* brachiopod community (Bretsky 1970). It is only occasionally found in the more shallow community (BA1–2) typified by the trilobed planispiral gastropod *Tritonophon* sp. and lingulid brachiopods (the Plectonotid community of Rohr 1999). Both the Moroccan and Bohemian species occur in transgressive, deepening facies, associated with rich benthic communities (Horný 1997).

Palaeobiogeography.—In spite of several conflicting views in recent publications (Apollonov 2000; Mossakovskiy et al. 1993; Scotese and McKerrow 1991; Şengör and Natal’ in 1996), North Tien Shan region appears to have been a small, separate crustal terrane in the early Palaeozoic. Palaeomagnetic data presented recently by Bazhenov et al. (2003: 139) suggest that during the Late Ordovician North Tien Shan maintained a subequatorial southern position without any significant latitudinal displacement (Fig. 8). In particular, data provided for the Almaly Formation suggest 9°/c176 S for the early to middle Caradocian. Bazhenov et al. (2003) favoured the palaeogeographic model of Şengör and Natal’in (1996) that joined North Tien Shan with other Kazakh terranes as parts of the enormous “Kipchak island arc” that linked Baltica and Siberia. However, it is completely unsupported by existing data on the trilobite and brachiopod biogeography that are critical for evaluation of the relative longitudinal position of ancient plates and associated terranes through the Ordovician–Silurian (Fortey and Cocks 2003).

Two studied taxa are inadequate to prove or disprove these models, but existing information on the Middle and Late Ordovician brachiopods of North Tien Shan (Misius 1986) is strongly in favour of its position in relative proximity to small...
plates clustering around equatorial East Gondwana. In particular, *Ishimia* Nikitin, 1974 is known only elsewhere from Chu-Ili, Chingiz, New South Wales, and Siberus (Fortey and Cocks 2003; Percival et al. 2001), *Mabella* Misius, 1986 (= *Leptellina multicoastata* [Rukavishnikova, 1956]) and *Silyginia* (= *Leptellina tabylgatensis* Misius, 1986) are known from Chu-Ili, Chingiz and New South Wales, Australia (Popov et al. 2000; Percival et al. 2001), *Sulcastospira* Xu, 1979 (= *Kazgunia* Klenina, 1984) is confined to Chu-Ili, Chingiz, South and North China (Popov et al. 1999), whereas *Acculina* and *Dzebagлина* are endemic for North Tien Shan, Chu-Ili, and Chingiz (Popov et al. 2000; 2002).

The gastropod *Pychonema* is typically found in terranes of high latitude peri-Gondwana (i.e., Bohemia, France, Portugal, Morocco), in the Middle to early Late Ordovician, but with a disparate distribution in later Ordovician sediments. Though the lineage seems to have its origin in this part of peri-Gondwana, its record of dispersal to Avalonian and North Tien Shan in the Late Ordovician is obscure. Finds of *Ptychonema* in Kyrgyzstan do not therefore necessarily indicate a strong affinity to high latitude peri-Gondwana. Neither does the gastropod fauna of the Anderken Formation and the Otar “Horizon” of the Chu-Ili Range in Kazakhstan (Vostokova 1956). Coquinas of the Otar “Horizon” of the Chu-Ili Range in Kazakhstan (Vosto-

kova 1956; Koken and Perner 1925; Vostokova 1955, 1962; Yochelson 1963; Bjaly 1974; Zernetskaya 1976; Wagner 2002). Other occurrences are found in the Baltic (Koken and Perner 1925; Vostokova 1955, 1962; Yochelson 1963; Bjaly 1974; Zernetskaya 1976; Wagner 2002). Other gastropods are fairly abundant and diverse in the Chu-Ili deposits. However, Vostokova (1956) warned that the identification of taxa in her material was difficult, and therefore comparison with contemporaneous deposits of other regions should proceed only with great caution. In conclusion, therefore, overall the Upper Ordovician faunas of North Tien Shan show close similarities to contemporaneous faunas of the Chu-Ili terrane that have strong biogeographic signatures linking them to the faunas of South and North China (Fortey and Cocks 2003; Popov et al. 2002).

As was recognised by Wilde (1991), due to the presence of large land masses in the Southern Hemisphere during the Ordovician, monsoonal conditions with seasonal stormy weather and strong rain falls can be expected for the north-western peri-Gondwana situated in low latitudes. The inferred geographical position of North Tien Shan and Chu-Ili plates (Fig. 8) suggests that both the lingulid-gastropod association from North Tien Shan and the *Ectenoglossa* Association from Chu-Ili inhabited a sandy bottom within the tidal flat in tropics affected by monsoonal conditions. Remarkably Recent lingulids are still abundant along the coasts of southern and south-east Asia precisely in the same environment (Emig 1986, 1997). However, analysis of the environmental expansion of lingulids during the Ordovician suggests, that in the Early to Middle Ordovician the nearshore lingulid-dominated communities were mostly typical of temperate and high latitudes and usually included a significant number of epibenthic taxa (Havlíček 1982, 1989; Mergl 2002). Significant proliferation of the infaunal lingulid communities occurred mainly in the Darriwilian when they replaced completely epibenthic obolides in sandy bottom nearshore environment (Bassett et al. 1999). Since that time, associations of large epibenthic lingulids and acrotretids have moved offshore and are preserved exclusively as relicts in deep basal environments (Holmer et al. 1996). Diversity of nearshore lingulid communities decreased and they often became almost monospecific. Their association with gastropod and bivalve molluscs was relatively common (Bassett et al. 1999) and they become increasingly common at low latitudes.

Acknowledgements

Leonid Popov acknowledges support from the National Museum of Wales. Support to Jan Ove R. Ebbestad has chiefly been provided by the Swedish Research Council, and from the Wenner-Gren Foundations for visit to the Natural History Museum, London. Amanbek Mametob and Farid Kh. Apayarov acknowledge support from North Kyrgyz Geological Survey. Radvan J. Honyý (National Museum, Prague, Czech Republic) and John S. Peel (Department of Geology, Palaeobiology program, Uppsala University, Sweden) are thanked for providing invaluable comments and suggestions regarding the gastropod material. We are grateful to Alexander V. Mikolaichuk (Geological Institute, Bishkek, Kyrgyzstan) and Andrei E. Zorin (Almaty, Kazakhstan) for cooperation during field work and for the valuable information on the Ordovician geology of Kyrgyz Range. We are indebted to Christian Emig (Centre d’Océanologie de Marseille, France) and David M. Rohr (Sul Ross State University, Alpine, USA) for their useful and constructive comments on the manuscript.

References

Bradfield, K.E.S. 1999. Fossil communities of the late Ludlow and early

