Taxonomy, nomenclature, and evolution of the early schubertellid fusulinids

VLADIMIR I. DAVYDOV

The types of the species belonging to the fusulinid genera Schubertella and Eoschubertella were examined from publications and type collections. Eoschubertella in general possesses all the features of Schubertella and therefore is a junior synonym of the latter. However, the concept of Eoschubertella best describes the genus Schubertina with its type species Schubertina curculi. Schubertina is closely related to the newly established genus Grovesella the concept of which is emended in this paper. Besides Schubertella, Schubertina, and Grovesella, the genera Mesoschubertella, Biwaella are reviewed and three new species, Grovesella nevadensis, Biwaella zhikalyaki, and Biwaella poletaevi, are described. The phylogenetic relationships of all Pennsylvanian–Cisuralian schubertellids are also proposed. Barrel-shaped Grovesella suggested being the very first schubertellid that appears sometimes in the middle–late Bashkirian time. In late Bashkirian it is then developed into ovoid to fusiform Schubertina. The latter genus gave rise into Schubertella in early Moscovian. First Fusiella derived from Schubertella in late Moscovian, Biwaella—in early Gzhelian and Boultonia—in late Gzhelian time. Genus Mesoschubertella also developed from Schubertella at least in Artinskian, but may be in late Sakmarian.

Key words: Foraminifera, Fusulinida, Schubertellidae, evolution, taxonomy, Permian, Carboniferous.

Introduction

Schubertella Staff and Wedekind, 1910 and Eoschubertella Thompson, 1937 are quite common Pennsylvanian and Permian foraminiferal taxa. As noted by many fusulinid workers, both genera possess similarities in morphology and the latter genus has often been synonymized under the former one (Rauser-Chernousova et al. 1951; Rosovskaya 1975). Nevertheless, both names are used quite widely in the literature. However, the name Eoschubertella has been employed mostly using the concept of “practicality”. As stated by Groves (1991: 80) “In practice, western specialists apply the name Schubertella to Permian specimens and Eoschubertella to Middle–Late Pennsylvanian ones, with intervening Upper Pennsylvanian specimens referred by various authors to either genus”. Eoschubertella, however, has been reported from Lower, Middle and even Upper Permian deposits (Suleimanov 1949; Leven 1998a; Kobayashi 2006) and therefore the concept of “biostratigraphic convenience” (Ueno in Fohrer et al. 2007) has not always been applied. The genus Schubertina Marshall, 1969 is not well known to specialists as it was described in a local journal that is not readily available outside of the USA. The writer, for example, was not aware about this genus until very recently. Besides, this genus was commonly considered to be a junior synonym of Eoschubertella (Groves 1991; Fohrer et al. 2007). The aim of this paper is to clarify the concept of Schubertella and related genera based on analyses of the types and topotypes of Schubertella, Eoschubertella, Schubertina and some related taxa.

Systematic paleontology

In the author’s recent study (Davydov 1997, 2009; Davydov et al. 2001; Davydov and Arefifard 2007; Davydov and Khodjanyazova 2009) of Schubertella and related genera in Donets Basin, Central Asia, Nevada, and Spitsbergen five groups of Schubertella-related forms that have already been reported in the literature are recognized:

(1) Very small ovoid forms with test possessing 3–4 volutions, less than 0.3 mm in length with poorly differentiated microgranular wall and skewed initial 2–3 volutions. These forms best fit with concept of Schubertina Marshall, 1969, but more often they have been referred to as Eoschubertella.
(2) Similar to previous group, but with a nautiloid shape, i.e., with form ratio less than one. Recently this type was described as the genus *Groveusella* by Davydov and Areffard (2007).

(3) Medium size and fusiform schubertellids larger than 0.3 mm but less than 1 mm in length, with 4 or more volutions, a three layered wall and skewed initial volutions. This group possesses features of *Schubertella* Staff and Wedekind, 1910.

(4) Advanced large schubertellids usually over 1 mm in length with thick well developed, multi-layered wall assigned to *Mesoschubertella* Kanuma and Sakagami, 1957.

(5) Very large schubertellids over 1.5–2 mm in length with a thick wall with coarse mural pores often referred to as kerotheca, but lacking features characteristic for the latter such as branching pores. These schubertellids, known as *Biwaella* Morikawa and Isomi, 1960, are usually considered as being Permian, but also occur in the Gzhelian of the Donets Basin (see below in this paper).

Please note that the synonymy lists for genera include also chresonyms (see e.g., Smith and Smith 1973).

Superfamily Fusulinoidae von Möller, 1878

Family Schubertellidae Skinner, 1931

Genus Schubertella Staff and Wedekind, 1910

1910 *Schubertella* gen. nov.; Staff and Wedekind 1910: 121, pl. 4: 8.

1937 *Schubertella* Staff and Wedekind; Thompson 1937: 120–121.

Type species: *Schubertella transitoria* Staff and Wedekind, 1910, the exact location unknown (see discussion below), Spitsbergen, Carboniferous–Permian boundary transition.

Description.—Test small, usually less than 1–1.5 mm in length, ovoid to elongate fusiform with convex lateral slopes and sharply to bluntly pointed poles. The initial one-two volutions are nautiloid in outline with form ratio less than 1.0. They are coiled in one plane, but always skewed at large, and sharply to bluntly pointed poles. The initial one-two length, ovoid to elongate fusiform with convex lateral slopes.

Remarks.—There is a puzzling story associated with the type-species of *Schubertella*, *Schubertella transitoria* Staff and Wedekind, 1910. The authors originally presented drawings of two specimens (see Fig. 1A, B herein) that were regarded by them as dimorphic representatives of the species. Nevertheless, Thompson (1937: pl. 8: 4) designated only one of them (Fig. 1A herein) “… as typical of *S. transitoria*” (Thompson 1937: 122) designating that way the lectotype of the type-species of *Schubertella*. The second specimen as noted by Thompson (1937), which has a very large proloculus, planispiral coiling and symmetrical volutions does not even belong to the genus. In my opinion this specimen probably is a juvenile form of *Schellwienia* that co-occurs with *Schubertella* in the original sample.

The “microspherical” specimen possesses an endothyroid juvenarium, but on the drawing it appears planispiral. Although, Hans von Staff generally photographed fusulinds, in the case of *S. transitoria* only a drawing was provided (Staff and Wedekind 1910: pl. 4: 7, 8). Probably a magnification of over 100 times could not be technically accomplished by Hans von Staff at that time. Also, it might be that in the thin-section of the lectotype, the axis of the initial nautiloid volution was in the same plane as the thin-section and thus all volutions looked planispiral on the drawing. Staff and Wedekind (1910) mentioned two localities, Tempel Bay and Klas Billen Bay from which the samples they studied came, but they did not specify the exact location.

Although Thompson (1937) designated the lectotype from Staff and Wedekind’s (1910) publication, he found that the original material was lost. Thus, Thompson (1937) studied samples from several localities in Spitsbergen from which the collections obtained by Alfred G. Nathorst in 1882 and studied by Staff and Wedekind (1910) came. One collection came from Tempel Bay which Thompson thought could be from where one of the topotypes of *S. transitoria* came. He found there a specimen (Thompson 1937, refigured herein as Fig. 1C) that since has been used as an illustrative reference to *S. transitoria* in many publications (Miklucho-Maklay et al. 1959; Thompson 1964; Loeblich and Tappan 1988). In the same paper in which he described the topotype of *S. transitoria*, Thompson (1937) erected the new subgenus *Eoschubertella* Thompson, 1937 with *Schubertella lata* Lee and Chen in
volution of this specimen. D, E. *Schubertella lata* Lee and Chen in Lee et al., 1930. D. The Huanglungshan, Lungtan, S. China, Huanglung Limestone, Moscovian, repository unknown, axial section of holotype (as designated by Thompson 1937), from Lee et al. (1930: pl. 6: 9). E. Lower part of the Huanglung Limestone, the Huanglungshan, Lungtan, S. China, repository unknown, axial section of paratype, from Lee et al. (1930: pl. 6: 10). I. *Mesoschubertella thompsoni* Sakagami in Kanuma and Sakagami, 1957; limestone pebbles of the Tamanouchi limestone conglomerate from Hinode-mura, Nishitama-gun, Tokyo-to, Kanto massif, Japan. 23918−A holotype (I1); 23918−A (I2) enlarged internal volutions of holotype showing the structure of the wall (arrow pointed to diaphanotheca) from Kanuma and Sakagami (1957: pl. 8: 6, 7). J. *Mesoschubertella mullerriedi* (Thompson and Miller, 1944); Secret Canyon section, 270.1 meters above the base of the section, Artinskian, Nevada. SUI 114209, sample WS8973; axial section (J1), enlarged internal volutions (J2) showing the structure of the wall with diaphanotheca. Scale bars A–G, I2 and J2 0.1 mm; H and J1 0.5 mm.
Lee et al. (1930) as the type species (refigured herein Fig. 1D, E). The concept of this genus was somewhat loose at the beginning. *Eoschubertella* as described possesses many features of *Schubertella* except, as stated by Thompson (1937), it lacks a four-layered wall with diaphanotheca. However, later Thompson (1964) and more recently Groves (1991) recognized that *Schubertella* has a three-layered wall. The other major difference between *Eoschubertella* and *Schubertella* according to the original description is the minute size and ellipsoidal to subglobular outline in the former as opposed to the fusiform and generally larger size in the latter (Thompson 1937; Groves 1991). Furthermore, Thompson (1937) specifically mentioned that *Eoschubertella* is early Pennsylvanian in age. Since that time fusulinid workers have referred early-middle Pennsylvanian minute ellipsoidal to subglobular forms to *Eoschubertella*. I agree with the concept of considering minute globose to ellipsoidal forms as a separate genus. The irony, however, is that the type species of *Eoschubertella*, *Schubertella lata* Lee and Chen, 1930 is substantially larger than either the lectotype of *Schubertella transitoria* in Staff and Wedekind (1910) or specimens from Spitsbergen in Thompson (1937) (Fig. 1A–E, herein). *Schubertella lata*, however, was printed with × 30 magnification, whereas specimens of Thompson (1937) from Spitsbergen were printed nearly three times larger, with × 84 magnification making *S. lata* appear as a “miniature” form. In the original description of *S. lata* (Lee et al. 1930: 111) the authors mentioned the elliptical outline of the loosely coiled test with a total length 0.6–0.75 mm and form ratios 1.5–1.75, coiling of the first volutation at nearly 90° in regards to outer volutions, small but distinct chomata and slightly wavy septa at the polar ends; the thin wall (20 μm) is three-layered, with a tectum and two tectoria. As stated by the authors (Lee and Chen in Lee et al. 1930: 111): “The absence of the light transparent layer or diaphanotheca is, however, a fact beyond doubt”. All features of *S. lata* suggest its close resemblance to *Schubertella transitoria* at the generic level. Thus, in my opinion *Eoschubertella* is a junior synonym of *Schubertella*.

The genus *Schubertina* Marshall, 1969, although not known widely, has always been placed in synonymy with *Eoschubertella* (Loeblich and Tappan 1988; Groves 1991; Ueno in Fohrer et al. 2007), because it best fits the concept proposed by Thompson for *Eoschubertella*. However, since the type-species of the latter genus is a junior synonym of *Schubertella*, *Schubertina* becomes a valid taxon.

Another new genus *Pseudoschubertella* also has been erected by Marshall (1969: 124–125) with type-species *Pseudoschubertella fusiforma* Marshall, 1969. The author agrees with Groves (1991) and Ueno in Fohrer et al. (2007) that *Schubertina* and *Pseudoschubertella* are very similar and belong to the same genus, and thus the latter is a synonym of the former.

Thompson (1948: 19) specifically pointed out that advanced *Schubertella* have a spheriotheca composed of a tectum and relatively thick lower clear layer that he sometimes called the diaphanotheca. This group of schubertellids is also characterized by a relatively large test that usually exceeds 1–1.5 mm in length, has large chomata and septa strongly fluted in the polar ends. This group best fits the concept of *Mesoschubertella* Sakagami in Kanuma and Sakagami, 1957 (see below).

Stratigraphic and geographic range.—*Schubertella* is distributed globally within the tropics-subtropics and known from Moscovian to Wordian (Rauser-Chernousova et al. 1951; Skinner and Wilde 1966; Leven 1998a, b).

Genus Schubertina Marshall, 1969

1964 *Eoschubertella* Thompson; Loeblich and Tappan 1964: C401 (pars).

Type species: *Schubertina circuli* Marshall, 1969, Bird Spring Formation, Clark County Nevada; Horquilla Limestone; Blue Mountain, Arizona; early Desmoinesian (middle Moscovian), Pennsylvanian.

Type material: *Schubertina circuli* Marshall, 1969: 122–123, pl. 1: 38–41 (holotype fig. 39; refigured herein as Fig. 2T) that is a junior syn-

Genus Grovesella Davydov and Arefifard, 2007

Fig. 2A–T.

Type species: *Grovesella tabasensis* Davydov and Arefifard, 2007, Khan Formation, latest Sakmarian—early Artinskian, Madbeiki section, Kalmarid area, East-Central Iran.

Description.—Test very small (0.09–0.2 mm in length and 0.2–0.3 mm in diameter), discoidal to barrel-shaped, with broadly rounded periphery and weakly to slightly umbilicate flanks. Proloculus is quite large. The proloculus/test ratio is 1:3 to 1:5, sometimes up to 1:7. Coiling planispiral with half or full first volition coiled at small angle in respect to following volutions. Length of the test is equal or significantly less than the width and consequently the means of form ratio is equal or less than one. Wall thin, its internal structure poorly visible. Wall probably two-layered with a darker thin tectum and slightly lighter structureless layer below the tectum. Chomata are not observed.

Remarks.—*Grovesella* is probably the ancestral taxon to all schubertellids. It closely resembles *Schubertina* in its small test size and relatively large proloculus, but differs from the latter in its barrel-shaped outline and planispiral or nearly planispiral coiling as opposed to the subglobose to ovoid outline and strongly skewed coiling in *Schubertina*. It also lacks chomata. *Grovesella* probably evolved from *Semistaffella* or *Eostaffellina* stocks as they all possess a similar barrel-shaped outline. *Grovesella* differs from *Semistaffella* in its much smaller size, two-layered wall as oppose to undifferentiated wall in *Semistaffella*, planispiral coiling and absence of chomata. Although *Grovesella* is similar to *Eostaffellina* in the outline, it differs from the latter in its loosely coiled volutions, larger proloculus and consequently a smaller proloculus/test ratio that is 1:3 to 1:5 in *Grovesella* and 1:15 to 1:30 in *Eostaffellina* and in the lack of chomata or pseudochomata that are always present in *Eostaffellina*.

Because *Schubertina* was unknown to the writer in 2007, several specimens belonging to *Schubertina* were included in the original description of *Grovesella* (Davydov and Arefifard 2007: 5–6), i.e., *Schubertina mosquensis* (Rauscher-Chernousova in Rauscher-Chernousova et al. 1951); *Schubertina compressa* (Rauscher-Chernousova in Rauscher-Chernousova et al. 1951); *Schubertina miranda* (Leonovitch in Rauscher-Chernousova et al. 1951); *Schubertina globulosa* (Safonova in Rauscher-Chernousova et al. 1951); *Schubertina borealis* (Rauscher-Chernousova in Rauscher-Chernousova et al. 1951) — all from the Moscovian of Russian Platform and surrounding areas. Now that, the genus *Grovesella* is restricted to barrel-shaped forms with planispiral coiling the above mentioned species are considered to belong to *Schubertina*.

The presence of a barrel-shaped test with a large proloculus and planispiral coiling make *Grovesella* homeomorphic to Permian *Levenella* Ueno, 1991 and *Zarodella* Sosnina, 1981. The latter genus has never been reported beyond the occurrence of the topotype in Far East Russia. Besides, it belongs...
to staffellids i.e., possesses specific wall structure with glassy luminotheca that is easily re-crystallized. Typical *Grovesella* sometimes identified as *Levenella* (for example Leven 1995: pl. 1: 3) as both genera possess similar morphology. The wall structure of these genera during ontogenesis, however, is quite different. It is structureless one-layered initially in *Levenella* (Ueno 1991b), but two-layered in *Grovesella*. In the outer volutions the wall in *Levenella* becomes two layered with dark tectum and fine alveolar keriotheca, whereas it does not changed in *Grovesella*. Besides this, the test size of *Levenella*
three times greater than those of Grovesella. It might be that Grovesella and Levenella are related each other and thus the Levenella, Pamirina, and Misellina are originating from Schubertella.

Stratigraphic and geographic range.—Grovesella is poorly known. Because of its very small size (＞0.2 mm) it might be overlooked in Permian rocks where workers generally look for large fusulinids. On the other hand, these forms are perhaps often considered as juvenile forms of Schubertella and therefore were ignored. Grovesella is distributed globally from Peri-Gondwana up to Panthalassa shelves and ranged from the middle Bashkirian up to Wordian.

Grovesella nevadensis sp. nov.

Fig. 2J–T.

Etymology: After the state Nevada (USA) where numerous specimens of the species were recovered.

Type material: Holotype: SUI 114224 (Fig. 2Q), axial section; paratypes: SUI 114217 (Fig. 2I), axial section; SUI 114218 (Fig. 2K), axial section; SUI 114219 (Fig. 2L), axial section; SUI 114220 (Fig. 2M), axial section; SUI 114221 (Fig. 2N), axial section; SUI 114222 (Fig. 2O), axial section; SUI 114223 (Fig. 2P), axial section; SUI 114225 (Fig. 2R), axial section; SUI 114226 (Fig. 2S), axial section; SUI 114227 (Fig. 2T), axial section.

Type locality: Arrow Canyon section, Bird Spring Formation, Nevada, USA.

Type horizon: Eoparafusulininaeidae beds, late Artinskian, Cisuralian.

Diagnosis.—Miniature test with nautiloid and broadly rounded periphery and nearly planispiral coiling, poorly visible but mostly probably two-layered wall; it is lacking chomata.

Description.—Test is very small, with 2–2.5 volutions, nautiloid with broadly rounded and nearly planispiral coiling, poorly visible but most probably two-layered wall; it is lacking chomata.

Length of the test is 160–200 μm, diameter (width) 180–250 μm, with form ratio of 0.79–0.9. Outer diameter of proloculus is 25–60 μm. Wall thin, poorly visible, sometimes two-layers, a darker, thin tectum and slightly lighter, structure less lower tectum can be observed. Thickness of the wall in the final volutions is 3–10 μm. Chamber generally absent, but sometimes dark secondary deposits present on the chamber floor in the final volutions (Fig. 2O). Because of lack of chomata, neither shape or size of the tunnel could be determined.

Remarks.—The species described here closely resembles Grovesella staffeloides (Suleimanov, 1949) from the late Asselian and Sakmarian of southern Urals but differs from it in smaller size of the test and the initial chamber, a smaller form ratio and lack of chomata. From Grovesella tabasensis Davydov and Arefifard, 2007 it differs in having a wider test and consequently a greater form ratio.

Genus Mesoschubertella Sakagami in Kanuma and Sakagami, 1957

Type species: Mesoschubertella thompsoni Sakagami in Kanuma and Sakagami, 1957; found in limestone pebble in Tamanouchi Limestone conglomerate together with Yakhtashian (late Artinskian–Kungurian) fusulinids; Yagooki Valley, Tamanouchi, Hinode-mura, Nishitama-gun, Tokyo-to, Japan.

Description.—Medium to large elongate-fusiform to inflated-fusiform schubertellids with more than 4–5 volutions. The test lengths exceed 1.0–1.5 mm. Proloculus/test ratio is 1:20 to 1:30 and is the greatest among the rest of genera discussed in this paper. Coiling is typical for schubertellids, i.e., the initial one or one and a half volutions are coiled at a large angle in respect to the following volutions. Wall is thick, with thin, dark tectum, well-developed upper tectorium, lower tectorium and lighter layer between the tectum and lower tectorium (diaphanotheca). The latter layer often can be barely recognized due to poor preservation. Chomata are small to medium, always prominent. Septa straight, slightly fluted in the polar ends.

Remarks.—Thompson already noted the prominent features of Permian Schubertella that he called advanced (Thompson 1948: 33), such as a relatively large size and a large number of volutions. At the same time, he stated that there was a single-layered wall. It seems that preservation severely affects schubertellid’s wall structure, and sometimes the wall may appear as a single structureless layer. However, in sufficiently well preserved forms (Fig. 1L, M) four layers of the wall with diaphanotheca are commonly observed. Ueno (1996) call the light intermediate and less dense layer between dark tectum and dense lower tectorium, as protheca. He pointed that this layer is quite different from actual diaphanotheca of Fususlinella, Beedeina, and Yangchienia, but did not explain how exactly it is different. In my opinion the term diaphanotheca does not represent chemically or compositionally determined layer, but simply the descriptive term for the light and less dense layer between the two more dense layers (Rausser-Chernousova and Gerke 1971).

Nevertheless, the wall structure is not the only feature that allows separation of Mesoschubertella from Schubertella. Mesoschubertella also differs from Schubertella in its greater size, generally exceeding 1.0 mm, and greater number of volutions (4–6 versus 3–4 in Schubertella). The morphological features of Schubertella and Mesoschubertella overlap, as these genera are closely related to each other, and a taxonomic differentiation in some specimens could be difficult.

Stratigraphic and geographic range.—Mesoschubertella commonly is considered to be Tethyan form only, but as shown here it also occurs in Mexico and Nevada (Fig. 1L). Therefore, the genus is global in distribution and ranges from the Cisuralian (possibly the late Gzhelian) to the Guadalupian.

Genus Biwaella Morikawa and Isomi, 1960

Figs. 3–5.

1964 *Biwaella* Morikawa and Isomi; Thompson in Loeblich and Tappan 1964: C418.

1965 *Biwaella* Morikawa and Isomi; Skinner and Wilde 1965: 95.

1996 *Biwaella* Morikawa and Isomi; Chediya in Rauser-Chernousova et al. 1996: 114.

Type species: *Biwaella omiensis* Morikawa and Isomi, 1960; Minami-toba, near Lake Biwa, Shiga Prefecture, Japan; ?Artinskian.

Description.—Test large for schubertellids, inflated fusiform to subcylindrical, with broadly rounded axial ends, usually exceeds 1 mm in length. Proloculus is relatively small, its outside diameter is around 100–150 μm. Proloculus/test ratio is 1:8 to 1:15. The axis of initial subglobose tightly coiled volutions is typically at a large angle to the axis of other volutions. Second volution is ovoid. Following volutions ex-

Fig. 4. Type of *Biwaella* and *Biwaella poletaevi* sp. nov. A–H. *Biwaella poletaevi* sp. nov. A–G. Kalinovo section, P2 2 Limestone, Donets Basin, Ukraine. A. SUI 114238, sample A-3/31a-8, axial section of paratype (A1), box indicates the enlarged part of final volution in A1 showing coarse mural pores (A2). B. SUI 114239, sample A-3/31a-5, axial section of paratype. C. SUI 114240, sample A-3/31a-77; sagittal section of paratype. D. SUI 114241, sample A-3/31a-83, axial section of holotype. E. SUI 114242, sample A-3/31a-84, axial section of paratype. F. SUI 114243, sample A-3/31a-96, axial section of paratype. G. SUI 114244, sample A-3/31a-8; sagittal section of paratype. H. *Biwaella omiensis* Morikawa and Isomi, 1960, repository unknown, axial section of holotype, from Morikawa and Isomi (1960: pl. 54: 1); ?Artinskian; Minamitoba, near Lake Biwa, Shiga Prefecture, Japan. Scale bars: A1, D–F, H 1 mm, C 0.5 mm, A2 0.1 mm, G 0.1 mm.
Gzhelian and continued to develop throughout the Cisuralian. It appeared in the early family Schwagerinidae described here this genus is distributed globally within tropics−subtropics. It appeared in the early

Stratigraphic and geographic range

The species named after the Director of Artemgeology, Ukraine, Dr. Nikolay Vasilievich Zhikalyak who supports my study in the Donets Basin.

Type material: Holotype: SUI 114229 (Fig. 3C), axial section; paratypes: SUI 114228 (Fig. 3A), axial section; SUI 114230 (Fig. 3E), axial section; SUI 114231 (Fig. 3F), axial section; SUI 114232 (Fig. 3G), axial section; SUI 114233 (Fig. 3H), axial section; SUI 114234 (Fig. 3I), axial section; SUI 114235 (Fig. 3J), axial section; SUI 114236 (Fig. 3K), axial section; SUI 114237 (Fig. 3L), axial section.

Type locality: Kulinovo section near Kulinovo village, Luganskaya County, western Donets Basin, Ukraine.

Type horizon: Limestone P₂, Darvasoschwagerina donbassica–Schagonella proimplexa beds, early Gzhelian, Pennsylvanian.

Diagnosis.—Large elongate-fusiform test with pointed polar ends, tight coiling initially and loose at maturity, wavy septae, small, but prominent chomata in all volutions and wide tunnel.

Description.—Large, elongate-fusiform test with rounded pointed polar ends possessing 5–6 volutions. First–second volutions are nearly globular. Starting from the third volution, test elongates quite rapidly and reaches elongate-fusiform outline in fourth and following volutions. Initially tight coiling becomes much looser starting from the fourth volution. The initial volution coiled with large to very small angle in respect to outer volutions. In some forms coiling is planispiral or nearly planispiral. Test with length of 1.4–1.96 mm and diameter 0.48–0.65 mm producing form ratio 2.6–3.1 in the final volution. Outer diameter of proloculus varies between 45 and 80 μm, but generally is around 50–60 μm. Wall thin initially (15–20 μm), gradually becomes very thick and reaches thickness 40–45 μm in final volution. It is two−layered with thin dark tectum and thick lighter tectorium. Wall in the final volution penetrated by coarse pores up to 7–8 μm in diameter. Pores can be observed also in the volution before the final, but not elsewhere. Septa are straight or slightly wavy throughout the length except at the polar ends where they are fluted. Chomata very small initially are not always present in the final volution. Tunnel low and narrow initially becomes quite wide in the final volution.

Remarks.—Biwaella closely resembles elongate Schwageriniformis and Obsoletes, but differs from both of these genera in having a much smaller test, skewed initial volution and, most important, a wall with mural pores only in final volution as opposed to keriothecal wall with lower and upper keriotheca that are developed in all volutions in Schwageriniformis and Obsoletes. Davydov (1984) has shown that although Biwaella and its descendant genus Dutkevichites possess coarse porosity, these genera are schubertellids. Nevertheless they both are often included in the schwagerinids (Loeblich and Tappan 1988; Rauser-Chernousova et al. 1996). Traditionally, a wall with coarse pores (Figs. 3B, D, 4B, 5B) is called keriotheca. It has been demonstrated (Thompson 1964; Davydov and Krainer 1999; Forke 2002; Leppig et al. 2005; Davydov 2007) that there is a principal difference between a true keriothecal wall developed in the family Schwagerinidae and a wall with coarse mural pores. A keriothecal wall possesses two sets of “piped” pores that are joined with each other and form a lower and upper keriotheca. In the lower part of the keriotheca the “pipes” are coarser than in the upper part of the keriotheca (Fig. 5E, G, F). In paraxial sections of keriothecal wall, two sets of pores (or “pipes”) of different size are clearly seen (Fig. 5F). Pores in the Biwaella wall are uniform in diameter throughout the thickness of the wall and in oblique sections only uniform pores can be observed (Fig. 5B). Late Gzhelian Dutkevichites Davydov, 1984, which probably evolved from Biwaella, differs from the latter in fluting of the septa developed throughout the length of the test.

Etymology: The species named after the Director of Artemgeology,
Type material: Holotype: SUI 114241 (Fig. 4E), axial section; para-types: SUI 114238 (Fig. 4A), axial section; SUI 114239 (Fig. 4C), axial section; SUI 114240 (Fig. 4D), axial section; SUI 114242 (Fig. 4F), axial section; SUI 114243 (Fig. 4G), axial section; SUI 114243 (Fig. 4H), axial section.

Type locality: Kalinovo section near Kalinovo village, Luganskaya County, western Donets Basin, Ukraine.

Type horizon: Limestone P$_2^2$ Limestone, Darvasoschwagerina donbassica–Scha-gonella proimplexa beds, early Gzhelian, Pennsylvanian.

Diagnosis.—Large elongate-subcylindrica test with rounded polar ends, nearly uniforne coiling, wavy septae, poorly developed chomata that are often absent in the final volutions.

Fig. 5. The types of porosity in keriothecal and non-keriothecal wall. All specimens from Kalinovo section, P$_2^2$ Limestone, lower Gzhelian, Donets Basin, Ukraine.

A. *Biwaella poletaevi* sp. nov., SUI 114245, axial section of paratype, sample A-3/31a-3.

B. *Biwaella* sp., SUI 114246, oblique section, arrow points to coarse mural pores MP; the diameter of the pores is the same elsewhere within the wall; sample A-3/31a-86.

C. *Schubertella sabkingi* Putrja, 1939.

E. *Darvasoschwagerina archaica* (Leven and Scherbovich, 1978), SUI 114249, axial section, sample A-3/31a-22.

F. *Darvasoschwagerina sp.*, SUI 114250, oblique section, arrows point to the two different types of pores: UK - fine pores in upper keriotheca, LK - coarse pores in lower keriotheca; sample A-3/31a-22.

H–M. *Nodosinelloides* sp.

H. SUI 114252, axial section, sample A-3/31a-16.

I. SUI 114253, axial section, sample A-3/31a-84.

J. SUI 114254, axial section, sample A-3/31a-4.

K. SUI 114255, axial section, sample A-3/31a-5.

L. SUI 114256, axial section, sample A-3/31a-5.

M. SUI 114257, axial section, sample A-3/31a-104. Scale bars A, B, E, G 1 mm, C, D, F 0.5 mm, H–M 0.1 mm.

DOI: 10.4202/app.2010.0026
Description.—Large, subcylindrical test of 5–6 volutions with broadly rounded polar ends. Test elongates quite rapidly starting from the third volution and becomes subcylindrical in outline in the two outer volutions. The coiling is planispiral or nearly planispiral. Initial volution is coiled tight then expands uniformly but rapidly. The final volution is loosely coiled. Test with length of 2.0–2.5 mm and diameter 0.57–0.65 mm producing form ratio 3.2–4.1 in the final volution. Outer diameter of proloculus is 40–60 μm. Wall is thin initially, reaching thickness up to 20–30 μm in the final volution. Its internal structure is the same as in Biwaella zhikalyaki sp. nov. Septa are straight or slightly wavy throughout the length except at the polar ends where they are fluted. Chomata in early volutions are prominent, but absent in two outer volutions. Tunnel is moderate in height and width throughout the growth.

Remarks.—This species strongly resembles Biwaella ex gr. omiensis Morikawa and Isomi and Biwaella sp. No. 2 from middle–late Asselian of Darvas, Tadzhikistan, Central Asia (Leven and Scherbovich 1978) in its subcylindrical outline in two outer volutions, weak septal fluting throughout the length of the test, intensive fluting in polar ends, and lack of chomata in the two outer volutions. Biwaella omiensis Morikawa and Isomi, 1960 possesses some similarities with the described species but the described species differs in its rather fusiform outline of the test, smaller size and much smaller chomata.

Stratigraphic and geographic range.—Schagonella proimplexa Zone, early Gzhelian, Pennsylvanian, Donets Basin; middle–late Asselian of Darvas, Central Asia.

Evolution and development of Schubertella and related genera

The ontogeny of Schubertella and related genera suggests the following phylogenetic development and relationship. The earliest representative of the schubertellids, Grovesella, is very small and nautiloid, with a poorly developed wall and nearly planispiral coiling. It appeared in the Tethys sometimes in the mid-Bashkirian (Sinitsyna and Sinitsyn 1987, Nikolaev 2005) (Fig. 6). Probably, Grovesella evolved from Semistaffella or Eostaffellina stocks because all possess a similar barrel-shaped outline and small size. The proloculus/test ratio in Grovesella is 1:3 to 1:5. Grovesella probably was quite rare at that time as it has been reported from only a few localities in the western Tethys and Timan-Pechora (Manukalova-Grebenyuk et al. 1969; Sinitsyna and Sinitsyn 1987; Nikolaev 2005). In late Bashkirian (early Atokan) time, it
dispersed globally within the tropics-subtropics including North America (Thompson 1937; Groves 1986, 1991). It is generally rare in assemblages with two acmes in roughly Artinskian and Kungurian time and developed up to the Wordian (early Midian) (Kobayashi 2006).

The appearance of the genus *Schubertina* was a second step in the evolution of early schubertellids. It was derived from *Grovesella* almost immediately after its origination in mid–late Bashkirian time (Sinitsyna and Sinitsyn 1987; Nikolaev 2005). *Schubertina* is larger than *Grovesella* overall, it possesses more volutions and the early volutions coil at a large angle in respect of volutions at maturity. The proloculus/test ratio in *Schubertina* is 1:4 to 1:5, i.e., slightly larger but overlapping that of *Grovesella*. The wall of *Schubertina* is differentiated into two layers. *Schubertina* has a stratigraphic and geographic range similar to that of *Grovesella*, i.e., it survived for nearly 50 Ma from late Bashkirian up to Wordian.

It seems that true *Schubertella*, i.e., forms restricted to the type-species, first appeared in the Moscovian (Rauser-Chernousova et al. 1951). These forms are generally have fusiform outlines, at least 0.3–0.5 mm in length and have a significant number of volutions (generally 3–4, sometimes up to 6). Most important is that the ratio of proloculus/final volution diameter in *Schubertella* is greater than 1:10 which does not overlap that of *Schubertina*. The wall of *Schuber−
tella* is differentiated into three layers which are penetrated by relatively coarse pores observed on well preserved specimens. Although *Schubertella* is generally rare in foraminiferal assemblages, sometimes it forms a specific schuber−
tellid or staffellid-schubertellid facies in restricted or cooler/deeper water environments (Teodorovich 1949; Rauser-Chernousova 1950; Baranova and Kabanov 2003). *Schubertella* lived from the Moscovian through Lopingian with several acme zones in the Moscovian–Kasimovian, late Asselian–early Sakmarian and late Artinskian time.

In early Gzhelian time, the relatively large schubertellid *Biwella* with a thick coarsely porous wall developed from *Schubertella*. The *Biwella* morphotype once evolved was conservative overall and the genus survived through Artinskian–Kungurian time. In the latest Gzhelian *Dutkevitchites*, i.e., a *Biwella*-like form with fluted septa, was derived from the latter. This highly specialized form is developed into *Sphaeroschwagerina* (Davydov 1984). All three genera, *Biwella*, *Dutkevitchites*, and *Sphaeroschwagerina* form the subfamily *Biwaellinae* Davydov, 1984.

The exact time of appearance of another advanced schub−
tertellid, *Mesoschubertella*, is not clear. It is documented in Artinskian through Murgabian time, but its origination could have been in the Sakmarian–Asselian or even in the late Gzhelian.

Acknowledgements

Thanks to prompt help from Tiffany S. Adrain (Collections Manager from the University of Iowa Paleontology Repository, Keosauqua, USA) and Susan H. Butts (Collector Manager, Division of Invertebrate Paleontology, Peabody Museum of Natural History, Yale University New Haven, CT, USA) the author was able to study and photograph the original collections of Marcus L. Thompson and Charles A. Ross from Spitsbergen and Arizona. I’m in debt to Calvin H. Stevens (San Jose University, California, USA) for his help in improving the taxonomy and English. Critical reviews of Daniel Vachard (UFR Sciences de la Terre, Université de Lille 1, France), Folger Forke (Museum für Naturkunde, Humboldt-Universität zu Berlin, Germany), and Merlynd and Galina Nestel (both The University of Texas at Arlington, USA) significantly enhanced the paper. This study supported by NSF grants EAR-0545247 and EAR-0746107.

References

Davydov, V.I. and Kainer, K. 1999. Fusulinid assemblages and facies of the Bombasov Fm. and basal Meledis Fm. (Moscovian–Kasimovian) in the central Carnic Alps (Austria/Italy). *Facies* 40: 157–196. [CrossRef]

Fohrer, H.C. 2002. Biostratigraphic subdivision and correlation of uppermost Carboniferous/Lower Permian sediments in the southern Alps; fusulinoidace and conodont faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and Southern Urals (Russia). *Facies* 47: 201–275. [CrossRef]

Groves, J.R. 1986. Foraminiferal characterization of the Morrowan–Atokan