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Like phoenix from the ashes: How modern baleen whales 
arose from a fossil “dark age”
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The evolution of baleen whales (Mysticeti), the largest animals on Earth, was punctuated by a pivotal turnover event. 
Following their emergence around 36 million years (Ma), mysticetes diversified into a disparate range of toothed and 
toothless species until 23 Ma, but then nearly vanished from the global fossil record for the next five million years. 
Following this early Miocene “dark age”, toothless mysticetes spectacularly reappeared around 18–17 Ma, whereas 
toothed mysticetes had gone entirely extinct. Here, we suggest that this turnover event reflects a change in mysticete 
habitat occupancy. Using the well-sampled record of Australasia as a case study, we show that Oligocene pre-“dark age” 
mysticetes formed distinct coastal and offshore assemblages, dominated by small (2–4 m), ecologically disparate toothed 
species, and larger (5–6 m) toothless filter feeders, respectively. Environmental change around the Oligocene–Miocene 
boundary led to the decline of the endemic coastal assemblages, leaving nearshore deposits virtually devoid of mys-
ticetes. Filter feeders persisted offshore and subsequently re-invaded coastal habitats during the mid-Miocene Climatic 
Optimum, thus establishing the modern, cosmopolitan mysticete fauna.
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Introduction
Baleen whales (Mysticeti) are the largest animals on Earth. 
Unlike all other cetaceans, extant mysticetes are completely 
toothless, and instead rely on a comb-like keratinous filter, 
baleen, to strain small prey directly from seawater (Pivorunas 
1979). Filter feeding enables whales to tap into vast food 
sources at a relatively low trophic level, and has turned them 
into major consumers and ecosystem engineers (Roman et 
al. 2014). In the North Pacific, for example, pre-whaling pop-
ulations of extant mysticetes consumed as much as 10% of 
total net primary productivity (Croll et al. 2006).

The evolution of mysticetes from their archaeocete an-
cestors is becoming increasingly better documented, and re-
veals a stepwise morphological shift from toothed raptorial 
feeders to toothless suction and/or filter feeders (Deméré 

et al. 2008; Marx et al. 2016a; Geisler et al. 2017). During 
this transition, lasting from the origin of mysticetes around 
36 Ma (Lambert et al. 2017) to the end of the Oligocene (23 
Ma), filter feeders were just one of several ecomorphs, and 
by no means dominant. Instead, mysticetes evolved into a 
wide range of toothed and toothless forms (Barnes et al. 
1995; Fitzgerald 2006, 2010; Tsai and Fordyce 2015; Marx 
et al. 2016a; Boessenecker and Fordyce 2017a; Geisler et al. 
2017), leading to high levels of morphological disparity that 
have never been matched since (Marx and Fordyce 2015). 
This disparate golden age of baleen whale evolution was not 
to last.

Baleen whales abruptly vanish from the fossil record 
near the Oligocene–Miocene boundary, marking the be-
ginning of an as yet unexplained 5 million-year-long “dark 
age” in their evolution. During this time, mysticetes are 
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virtually absent even from deposits where other cetaceans 
(Odontoceti) abound, such as (i) the Chilcatay Formation 
of Peru (Di Celma et al. 2018); (ii) the Pungo River and 
lower Calvert formations of the United States East Coast 
(Gottfried et al. 1994; Whitmore and Kaltenbach 2008); 
and various formations across (iii) the Mediterranean basin 
(Bianucci and Landini 2002), the (iv) western and central 
Paratethys (Pilleri 1986a, b; Grigorescu and Kazár 2006); 
and (v) the western United States (Barnes 1977; Crowley 
et al. 1999; Goedert et al. 2007) (Fig. 1). This pattern is 
striking, considering that mysticetes are common in, and 
sometimes even dominate, Oligocene assemblages (Barnes 
et al. 1995; Fordyce 2006; Goedert et al. 2007).

Toothless baleen whales (Chaeomysticeti) finally re-ap-
peared around 18–17 Ma, in the form of abundant, wide-
spread, and comparatively large taxa that dominate middle 
Miocene assemblages across the Atlantic and Pacific basins 
(Gottfried et al. 1994; Otsuka and Ota 2008; Bisconti et al. 
2013; Di Celma et al. 2017). Toothed mysticetes, by contrast, 
had gone entirely extinct. The early Miocene “dark age” 
thus marks a major turning point in baleen whale evolution: 
prior to it, mysticetes were relatively small, disparate, and 
included raptorial, suction and filter feeders; after it, only 
large, cosmopolitan filter feeders remained—a situation 
that has remained constant to this day, and defines the mod-
ern baleen whale fauna.

Here, we suggest that the early Miocene “dark age”, and 
the ensuing dominance of filter feeders, reflect a concurrent 
shift in mysticete habitat occupancy. Specifically, we pre-
dict that Oligocene toothed mysticetes retained closer ties to 

the coast than their toothless cousins, which in turn would 
have limited their geographical range and increased their 
susceptibility to environmental perturbations. Selective 
extinction of nearshore assemblages may explain the tem-
porary absence of baleen whales from the early Miocene 
fossil record, with pelagic filter feeders persisting, but being 
poorly represented owing to their remote habitat. Modern 
mysticetes would ultimately have arisen from this pelagic 
stock, as reflected in the dominance of filter feeders follow-
ing the end of the “dark age”.

Geological setting
To test the idea that Oligocene toothed mysticetes were 
primarily coastal, we focus on a globally informative 
case study: the late Oligocene fossil records of Victoria 
(Australia) and southern New Zealand. Both regions were 
located at simi lar palaeolatitudes, and preserve substan-
tial coeval, well-dated (Graham et al. 2000; McLaren et 
al. 2009; Tanaka and Fordyce 2016; Korasidis et al. 2018) 
and richly fossiliferous late Oligocene deposits (Fitzgerald 
2004; Boessenecker and Fordyce 2017a; Tsai and Fordyce 
2018). The latter primarily include the Jan Juc Marl, Point 
Addis Limestone, and Waurn Ponds Limestone of Australia 
(Holdgate and Gallagher 2003; Piper et al. 2006); and the 
Otekaike Limestone and Kokoamu Greensand of New 
Zealand (Thompson et al. 2014).

Whereas the Australian strata formed in a relatively 
warm, restricted bay along a continental margin (Holdgate 

Central Paratethys
(various localities)

Pungo River
Formation

Calvert Formation

Libano
Sandstone

Upper Marine
Molasse

Chilcatay
Formation

Clallam
Formation

Jewett Sand

Nye
Mudstone

“Pietra leccese”

Fig. 1. Location of major formations that have yielded diverse odontocete assemblages, but few or no mysticetes. Sources: Clallam Formation, Nye 
Mudstone, and Jewett Sand (Barnes 1977; Crowley et al. 1999); Calvert Formation (Gottfried et al. 1994); Pungo River Formation (Whitmore and 
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and Gallagher 2003), the nearby continental block of 
Zealandia was largely submerged during the late Oligocene. 
The remaining archipelago was far removed from any major 
landmass, and surrounded by cool- to temperate-water car-
bonate ramps that were broadly exposed to the open ocean 
(Thompson et al. 2014). This unique situation—extensive 
sediment accumulation in an offshore setting, now broadly 
exposed on land—singles out New Zealand from all other 
coeval cetacean localities globally, every one of which was 
located close to a major landmass. Taken together, Australia 
and New Zealand thus permit an unparalleled comparison 
of nearshore vs. open marine late Oligocene assemblages.

Material and methods
Both southern Victoria and the South Island of New Zealand 
have been consistently prospected as part of long-term field-
work programmes at the University of Otago (OU; Dunedin, 
New Zealand) and Museums Victoria (NMV; Melbourne, 
Australia). Both are currently led by two of the authors (REF 
and EMGF), with a focus on the fossil-rich regions of North 
Otago, South Canterbury, and coastal Victoria. Tympanic 
bullae (ear bones), in particular, have always been collected 
when encountered, irrespective of their association with 
other elements or state of preservation. Both programmes 
have amassed a substantial number of specimens, many of 
which have recently been (re)described (Fitzgerald 2006, 
2010; Boessenecker and Fordyce 2015a–c, 2017a; Tsai 
and Fordyce 2015, 2016, 2018; Fordyce and Marx 2016). 
Nevertheless, the majority have so far remained unreported, 
thus preventing a comprehensive species-level assessment of 
the two assemblages.

We quantified the number of mysticete fossils from 
both regions by counting the total number of tympanic bul-
lae currently held at public institutions (see SOM: table 1, 
Supplementary Online Material available at http://app.pan.
pl/SOM/app64-Marx_etal_SOM.pdf). We focussed on 
bullae because of their high diagnostic value and relative 
abundance. Most of the specimens were isolated finds and 
counted as a single data point, irrespective of whether they 
were left or right. This approach maximises the use of avail-
able material, but carries the risk of recording individu-
als twice. Given the considerable time scales and areas in-
volved, however, we judge double-counting to be minimal. 
Where bullae formed part of articulated specimens, only 
one side was counted.

To determine assemblage structure, we used diag-
nostic morphological characters to identify all bullae to 
one of three higher taxa: (i) Mammalodontidae, a family 
of small, tooth-bearing raptorial and/or suction feeders 
with a total body length of around 3 m (Fitzgerald 2010); 
(ii) Eomysticetidae, a basal clade of toothless suction and/
or filter feeders reaching 4–6 m (Boessenecker and Fordyce 
2017a); and (iii) other, more crownward chaeomysticetes, all 
of them likely filter feeders and generally reaching lengths 

of 5–7 m (Tsai and Kohno 2016; Slater et al. 2017; Fordyce 
and Marx 2018). See SOM for details.

Finally we calculated the contribution (in %) of each 
group to the Australian and New Zealand records, and then 
tested for differences in the relative counts by means of a 
two-way chi-square test, using PAST 3.14 (Hammer et al. 
2001). This approach focuses solely on proportions, rather 
than absolute abundance or taxonomic diversity, and should 
therefore be robust to potential sampling biases. Crucially, 
the basic nearshore/offshore contrast between New Zealand 
and Australia persisted throughout the late Oligocene, thus 
also minimising the effects of time averaging.

Results and discussion
Coastal vs. offshore assemblages.—We counted 67 tym-
panic bullae from Australia and 48 bullae from New Zea-
land (SOM: table 1). The Australian late Oligocene record 
is dominated by mammalodontids, with eomysticetids a dis-
tant second, and other chaeomysticetes being barely detect-
able (Fig. 2). By contrast, chaeomysticetes comprise most of 
the New Zealand assemblage, with eomysticetids contrib-
uting roughly one quarter, and mammalodontids only 4%. 
This pronounced difference in composition is statistically 
significant (χ2 = 77.744, p <0.001), and suggests the presence 
of distinct regional assemblages.

Given the geographical proximity of Australia and New 
Zealand, the marked divergence of their late Oligocene 
mysticete assemblages is best explained by environmental 
variation, namely, exposure to the open ocean and dis-
tance from the nearest major landmass. Specifically, the 
small-bodied mammalodontids seemingly were restricted 
to nearshore settings around Australia, where heteroge-
neous habitats allowed them to diversify into a disparate 
assemblage of raptorial and suction feeders. By contrast, 
larger filter feeding chaeomysticetes inhabited pelagic wa-
ters, allowing them to range around and beyond the archi-
pelago of Zealandia.

The small number of chaeomysticetes from Australia 
likely represent occasional visitors, or else carcasses washed 
in from the open sea. Their low proportion is consistent 
with extant cetacean stranding records, which are generally 
dominated by nearshore species. Thus, in the North Pacific, 
pelagic taxa like balaenopterids and ziphiids constitute ≤2% 
of local death assemblages (Pyenson 2010). Eomysticetids 
occurred in both coastal and offshore settings, but were 
more abundant in the latter (15% vs. 23%). Unlike the purely 
Australasian mammalodontids (but see Bianucci et al. 2011; 
Shipps et al. 2018), they also enjoyed a global distribution 
(Boessenecker and Fordyce 2017a). Eomysticetids thus may 
have been pelagic, albeit somewhat intermediate in terms of 
their geographical range and habitat preference.

There are no comparable Oligocene offshore records 
that would allow a similar analysis elsewhere. Nevertheless, 
assemblages consistent with our Australasian scenario oc-

http://app.pan.pl/SOM/app64-Marx_etal_SOM.pdf
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cur worldwide. Thus, other small toothed mysticetes (aetio-
cetids and Coronodon) inhabited the margins of the major 
landmasses of Japan (Barnes et al. 1995), western North 
America (Barnes et al. 1995; Marx et al. 2015), and the 
United States East Coast (Geisler et al. 2017). Most of these 
localities have also yielded either eomysticetids (Okazaki 
2012; Boessenecker and Fordyce 2017a; Hernández Cisneros 
et al. 2017), or similar species (e.g., Maiabalaena, Sitsqwayk, 
Tlaxcallicetus) resembling eomysticetids in their size, ar-
chaic morphology, and basal phylogenetic position (Peredo 
and Uhen 2016; Hernández Cisneros 2018; Peredo et al. 
2018). Other, more crownward, chaeomysticetes are gen-
erally rare. We therefore suggest that marked divisions be-
tween coastal and offshore assemblages existed globally, 
even though the composition of each assemblage varied 
between ocean basins.

The early Miocene “dark age”.—Around the Oligocene–
Miocene boundary (ca. 24–23 Ma), baleen whales seem-
ingly vanish from the global fossil record, heralding a 
5-million-year long global “dark age” in their evolution 
(Bianucci et al. 2018). In the few places where mysticetes do 
occur, such as the ca. 20 Ma Gaiman Formation (Patagonia, 
Argentina), only chaeomysticetes located crownward of 
Eomysticetidae are present (Cabrera 1926). The only excep-
tion to this pattern is a single, fragmentary eomysticetid 
from the earliest Miocene of New Zealand (Boessenecker 
and Fordyce 2017b).

Unlike mysticetes, odontocetes never disappear, which 
rules out taphonomy as a likely explanation for the “dark 

age”. Likewise, a previously suggested decrease in global 
diatom-based productivity (Bianucci et al. 2018) seemingly 
occurred too late (ca. 22–21 Ma) to have acted as a trig-
ger (Renaudie 2016). Instead, we suggest that the  demise 
of  archaic mysticetes had an abiotic cause, such as the 
>0.5 shift in δ18O coinciding with the Oligocene–Miocene 
boundary (Zachos et al. 2008), and/or the pronounced 40 m 
drop in global sea level around 25–24 Ma (Miller et al. 
2005) (Fig. 3). The latter seems especially significant, as it 
reached levels not previously experienced by any cetacean, 
nor subsequently seen again until the latest Miocene.

Restriction to the coast likely promoted endemism, 
which, along with foraging at a comparatively higher tro-
phic level (Clementz et al. 2014), limited the population 
sizes of toothed mysticetes, and increased their susceptibil-
ity to environmental perturbations. Loss of shallow-water 
habitats in response to falling sea levels would furthermore 
have directly impacted coastal species, and may have been 
a major factor in their decline. The disappearance of the 
more pelagic eomysticetids is harder to explain. Their oc-
currence in coastal waters may hint at a somewhat limited 
geographical distribution, plausibly increasing their sensi-
tivity to environmental change. Alternatively, their demise 
may simply have been a result of their relatively low overall 
abundance (15–23%).

As coastal (toothed) mysticetes declined, vacant niches 
were filled by a variety of diversifying odontocetes, re-
sulting in marked faunal turnover. Both direct competition 
and opportunistic replacement may have contributed to this 
pattern, with echolocation plausibly providing odontocetes 

Fig. 2. Comparison of Australasian late Oligocene baleen whale assemblages: south-eastern Australia (A1, B1) and New Zealand (A2, B2). A. Late 
Oligocene palaeogeographical reconstruction. B. Differences in mysticete assemblage composition. Note the widespread inundation of New Zealand. 
Dashed lines in A delineate the modern coastline without compensating for late Neogene Alpine Fault movement. Palaeogeographical reconstructions are 
based on King et al. (1999), King (2000), Holdgate and Gallagher (2003). Drawings of whales by Carl Buell. 
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Fig. 3. Patterns and potential drivers of the early Miocene “dark age”. A. Extinction of toothed mysticetes and eomysticetids at the beginning of the 
early Miocene “dark age”, and subsequent reinvasion of coastal habitats by larger, toothless filter feeding mysticetes during the middle Miocene. The 
occurrence of eomysticetids in the earliest Miocene is based on a single, fragmentary specimen from New Zealand (Boessenecker and Fordyce 2017b). 
B. Global oxygen isotope curve, showing the timing of the mid-Miocene Climatic Optimum (Zachos et al. 2008). C. Global sea-level change (Miller et al. 
2005). D. Global diatom abundance as derived from Deep-Sea Drilling Programme/Ocean Drilling Programme smear slides (Renaudie 2016). Highlighted 
events potentially relevant to the “dark age”: 1, a 0.5 shift in δ18O; 2, a 40 m sea-level fall; and 3, an early Miocene decrease in global diatom abundance. 
Reconstructions of mysticetes by Carl Buell. 
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with a competitive advantage. Nevertheless, we consider 
opportunistic replacement to be more likely, given that (i) 
toothed mysticetes and odontocetes had previously existed 
and diversified alongside each other for some 13 million 
years (Marx et al. 2016b); (ii) this long period of coexistence 
was possible despite the early emergence of sophisticated 
echolocation (Geisler et al. 2014); and (iii) certain odonto-
cete lineages, such as xenorophids, also seemingly disap-
peared during the “dark age”.

In light of these observations, we suggest that early Mio-
cene environmental change equally affected both mysticetes 
and odontocetes, with endemic coastal assemblages being 
under the greatest pressure. Toothed mysticetes were the 
first to disappear in response, perhaps because they were 
fewer in number, or less ecologically versatile. By con-
trast, echolocating odontocetes were diverse and/or adapt-
able enough to weather the changes, and subsequently (re)
invaded the newly vacant regions of nearshore ecospace. 
Unlike their coastal counterparts, pelagic mysticetes could 
range more widely, and thus benefitted from access to more 
varied habitats and scattered, but richly concentrated, prey. 
They persisted through the early Miocene, but, with few 
exceptions, are poorly represented in the mostly nearshore 
sedimentary record. Where they do occur, they seem to be 
associated with relatively open-water facies, consistent with 
a more pelagic habitat (Cuitiño et al. 2019).

The origin of the modern mysticete fauna.—Baleen 
whales spectacularly re-emerge in the fossil record close 
to the early–middle Miocene boundary, around 18–17 Ma 
(Gottfried et al. 1994; Kimura and Ozawa 2002; Otsuka and 
Ota 2008; Bisconti et al. 2013; Di Celma et al. 2017). The 
abruptness of this reappearance is best seen in locations 
with sequential early and middle Miocene exposures, such 
as the Calvert Formation of the eastern United States (Vogt 
and Parrish 2012; Vogt et al. 2018), and the Chilcatay–Pisco 
formations of Peru (Di Celma et al. 2017; DeVries and Jud 
2018; Bianucci et al. 2018). In both cases, early Miocene 
strata virtually devoid of mysticetes are followed by mid-
dle Miocene beds in which baleen whales are abundant, or 
even dominant (Gottfried et al. 1994; Di Celma et al. 2017; 
Bianucci et al. 2018). Crucially, all middle Miocene baleen 
whales are toothless filter feeders, with no trace of the eco-
logically disparate coastal assemblages that existed during 
the Oligocene.

The sudden abundance of middle Miocene mysticetes 
might be explained by a reinvasion of coastal habitats by 
pelagic filter feeders, perhaps associated with the onset of 
the mid-Miocene Climatic Optimum (Zachos et al. 2008). 
Because of their offshore origins, these new arrivals were not 
only larger (5–8 m long) than their Oligocene predecessors, 
but also more uniform in their feeding style and widespread 
in their distribution. In particular, globally occurring taxa 
like Parietobalaena (Kellogg 1968; Otsuka and Ota 2008; 
Bisconti et al. 2013) and Pelocetus (Kellogg 1965; Kimura 
et al. 2007; Di Celma et al. 2017) seem to herald the onset of 

mysticete cosmopolitanism. Considering the profound eco-
logical impact of extant whales (Roman et al. 2014), it is 
tempting to speculate that this proliferation of large filter 
feeders also had a lasting effect on ocean ecology, e.g., in the 
form of increased prey consumption (Croll et al. 2006), more 
numerous whale falls (Smith and Baco 2003; Pyenson and 
Haasl 2007), and elevated rates of vertical nutrient transfer 
(the “whale pump”) (Roman and McCarthy 2010).

The reinvasion of coastal habitats may have triggered 
a renewed diversification of mysticetes, perhaps giving 
rise to the speciose and relatively small-bodied cetotheri-
ids (Gol’din 2018). Nevertheless, baleen whales never again 
attained the high levels of ecomorphological disparity that 
existed during the Oligocene (Marx and Fordyce 2015). 
Instead, the basic characteristics of this new cosmopolitan 
fauna—obligate filter feeding, comparatively large body 
size, and wide geographical range—remained largely con-
stant, and continue to define mysticetes to this day. In this 
light, the early Miocene “dark age” represents a crucial 
turning point, which marks the rise of the modern mysticete 
fauna from the ashes of its disparate Oligocene past.

Conclusions
The evolution of baleen whales was punctuated by a major 
turnover event that resulted in a 5 million-year-long “dark 
age” in their global fossil record. This turnover event was 
plausibly driven by environmental change, and led to the 
disappearance of coastal assemblages composed of small, 
ecologically disparate species. Offshore assemblages dom-
inated by larger filter feeders persisted, but remain cryptic 
in the fossil record owing to their remote habitat. Around 
the time of the mid-Miocene Climatic Optimum, pelagic 
species reinvaded nearshore waters, thereby establishing the 
modern, cosmopolitan mysticete fauna.
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