A new genus of chemosymbiotic vesicomyid bivalves from the Oligocene of western North America

FRIDA HYBERTSEN, JAMES L. GOEDERT, and STEFFEN KIEL

We describe a new genus of the chemosymbiotic bivalve family Vesicomyidae, Squiresica, for two Oligocene species, previously assigned to Archivesica, from western North America. Squiresica is characterized by a small and weakly inflated shell, a small to nearly absent pallial sinus, an Archivesica-like hinge dentition, with an indistinct to well incised lunular incision. Two species are assigned to this new genus: the type species, S. knapptonensis from western Washington State, USA, and S. marincovichi from Oligocene strata of Alaska, USA. Squiresica knapptonensis had previously been described from the upper Oligocene of the Lincoln Creek Formation; further specimens are here reported from a newly discovered seep deposit in the lower Oligocene part of the Lincoln Creek Formation.

Key words: Bivalvia, Vesicomyidae, cold-seep, deep-water, Oligocene, North America.

Introduction

The Vesicomyidae is a species-rich family of chemosymbiotic marine bivalves found worldwide in deeper water, especially in reducing habitats such as hydrothermal vents, methane-seeps, and decaying whale carcasses (Boss and Turner 1980; Sasaki et al. 2005; Cosel 2006; Krylova and Sahling 2010). The larger vesicomyids of the subfamily Pliocardiinae all live in a symbiotic association with sulfur-oxidizing bacteria housed in their hypertrophied gills, from which they derive most, if not all, of their nutrition (Felbeck et al. 1981; Arp et al. 1984; Childress et al. 1993; Fisher 1995). Most species live half buried in soft substrates and simultaneously mine hydrogen sulfide from sediment pore water and extract oxygen from the water column (Dubilier et al. 2008; Krylova and Sahling 2010). The only exceptions are the hydrothermal vent species Turnerocochoncha magnifica (Boss and Turner, 1980), which lives on pillow lavas and extends its foot into the crevices between pillows to access the diffusing hydrogen sulfide (Krylova and Sahling 2020) and Laubiericoncha puertodesadoi Signorelli and Pastorino, 2015, of which empty shells have been found at active hydrothermal sites in the South Atlantic Ocean (Linse et al. 2020).

The family has an extensive fossil record, extending back to the middle Eocene, with the oldest record coming from Washington State (Goedert and Squires 1990; Amano and Kiel 2007). Many fossil species have been described, though the generic assignments of some of them remain contentious because their shell characters are insufficiently known. One particularly troublesome genus is Archivesica Dall, 1908, based on the large, extant Archivesica gigas Dall, 1896. Numerous fossil species of Eocene to Pleistocene age have been assigned to it (Amano and Kiel 2007, 2010; Amano and Suzuki 2010; Kiel and Taviani 2017; Hansen et al. 2017; Kiel et al. 2020), at some point even the as-yet oldest vesicomyid, though that species was subsequently considered as more likely belonging to Pliocardia (Amano and Kiel 2007, 2012). In molecular phylogenetic studies, species clustering with Archivesica gigas are often referred to as the “gigas”-group and include species assigned in other studies to the genera Archivesica, Phreagena Woodring, 1938, Laubiericoncha Cosel and Olu, 2008, Ectenagena Woodring, 1938, and Akebiconcha Kuroda, 1943 (Audzijonyte et al. 2012; Decker et al. 2012; Johnson et al. 2017). Ongoing phylogenetic work on the Vesicomyidae using morphologic characters, by us, indicates that two small-sized, fossil species previously assigned to Archivesica, A. knapptonensis Amano and Kiel, 2007 and A. marincovichi...
Kiel and Amano, 2010, are closely related to each other, but are quite distant to the type species *Archivesica gigas*. A re-examination of the shell characters of these two species indeed revealed several features inconsistent with those of *A. gigas*, including their small size, slender shape, and often the presence of a lunular incision. A new genus is here introduced for these two species, and additional material of *A. knapptonensis* from a recently discovered late early Oligocene seep deposit in western Washington State, USA, is reported.

Institutional abbreviations.—NRM, Swedish Museum of Natural History, Stockholm, Sweden; UCMP, University of California, Museum of Paleontology, Berkeley, USA; USNM, Smithsonian Museum of Natural History, Washington, DC, USA.

Other abbreviations.—H, height; L, length; W, width.

Nomenclatural acts.—This published work and the nomenclatural acts it contains, have been registered in ZooBank: urn:lsid:zoobank.org:pub:C706ED1A-0393-4414-9BDA-CC0AF38FCF56

Material and methods

The new seep deposit was discovered by JLG and SK in August 2019 in bedrock of the Lincoln Creek Formation on the east side of the West Fork Satsop River, Grays Harbor County, Washington (WGS84 datum GPS coordinates: 47.268247° N, 123.562015° W, Fig. 1). Based on Rau’s stratigraphy of the West Fork Satsop section (Rau 1966) and the magnetostratigraphy of the Canyon River section of Prothero and Armentrout (1985), the deposit was found in the upper lower Oligocene part of the Lincoln Creek Formation (at C10r, around 31 million years ago).

The nodular, fossiliferous limestone block measures at least 1.5 × 1.0 m. In addition to the vesicomyid species reported here, we collected two large specimens of *Acharax* sp. (height 30 mm), common mussels resembling *Bathymodiolus sensu lato* *satsopensis* Kiel and Amano, 2013 (up to 40 mm length), *Conchocele* sp. (30 mm long), a small *Lucinoma acutilineata* Conrad, 1849, a fragment probably belonging to a species of large lucinid (cf. *Elliptiolucina*), the naticid *Polinices washingtonensis* Weaver, 1916, and poorly preserved fragments possibly belonging to *Provana anti qua* Squires, 1995. Specimens were mechanically extracted from the rock matrix using hammers and chisels, and pneumatic fossil preparation tools. Specimens were coated with ammonium chloride prior to photography.

Systematic palaeontology

Class Bivalvia Linnaeus, 1758
Family Vesicomyidae Dall and Simpson, 1901

Genus *Squiresica* nov.

Type species: *Archivesica knapptonensis* Amano and Kiel, 2007, Oligocene part of the Lincoln Creek Formation, western Washington State, USA.

Species included: The type species and *Archivesica marincovichi* Kiel and Amano, 2010, from the Oligocene Kulthieth Formation in Alaska, USA.

Etymology: In honor of Richard L. Squires (Northridge, USA), who pioneered work on fossil vesicomyids from the US West Coast, and the ending of the related vesicomyid genus *Archivesica*.

Diagnosis.—Shell small (L up to 50 mm), elongate, weak to moderately inflated; escutcheon narrow, lunular incision indistinct to well incised, narrow to moderately broad; umbo elevated. Pallial line impressed anteriorly; pallial sinus small and shallow, or even just a slight forward sloping of the pallial line before meeting the posterior adductor muscle scar; hinge plate moderately broad, with thick cardinal 1 radiating anteriorly, cardinal 3a thin, short and parallel to shell margin or reduced, cardinal 3b small, pointing posteroventrally, with parallel or somewhat diverging raised edges; subumbonal pit elongate or deep.
Table 1. Comparison of diagnosable features of the pliocardiin genera discussed herein. Shell size describes the length (L) of the shell: small (S) L <50 mm, medium (M) L 50–120 mm, large (L) L >120 mm. Cardinal 3a has three different character states, it can be separated from cardinal 3b, fused with 3b or reduced which refers to an absent state.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Shell size</th>
<th>Umbo</th>
<th>Inflation</th>
<th>Posterior ridge</th>
<th>Pallial sinus</th>
<th>Escutcheon</th>
<th>Lunular incision</th>
<th>Cardinal 3a</th>
<th>Cardinal 3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archivesica</td>
<td>M–L</td>
<td>low</td>
<td>strong</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
<td>absent</td>
<td>separate</td>
<td>semi-triangular shape</td>
</tr>
<tr>
<td>Austrogena</td>
<td>S</td>
<td>elevated</td>
<td>strong</td>
<td>present</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>reduced</td>
<td>broad</td>
</tr>
<tr>
<td>Hubertschenkia</td>
<td>M</td>
<td>elevated</td>
<td>moderate</td>
<td>absent</td>
<td>small indentation</td>
<td>present</td>
<td>absent</td>
<td>fused</td>
<td>oblique state</td>
</tr>
<tr>
<td>Isorropodon</td>
<td>S</td>
<td>strong</td>
<td>present</td>
<td>small indentation</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>fused</td>
<td>semi-triangular shape</td>
</tr>
<tr>
<td>Pleurophopsis</td>
<td>M</td>
<td>low</td>
<td>moderate</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
<td>reduced</td>
<td>semi-triangular shape</td>
</tr>
<tr>
<td>Pliocardia</td>
<td>S</td>
<td>elevated</td>
<td>strong</td>
<td>present</td>
<td>small indentation</td>
<td>present</td>
<td>present</td>
<td>fused</td>
<td>semi-triangular shape</td>
</tr>
<tr>
<td>Squiresica gen. nov.</td>
<td>S</td>
<td>elevated</td>
<td>strong</td>
<td>present</td>
<td>small indentation</td>
<td>present</td>
<td>present</td>
<td>separate</td>
<td>oblique state</td>
</tr>
</tbody>
</table>

Remarks.—The new genus Squiresica has an Archivesica-like hinge dentition, but differs from Archivesica by (i) being much smaller, (ii) having an elevated umbo with strongly coiled beaks, (iii) its pallial sinus, which is only a small indentation, whereas Archivesica in general, and the type species A. gigas in particular, has a large and broad pallial sinus, (iv) possessing an escutcheon and typically a lunular incision, both of which are absent from Archivesica gigas. Archivesica redwoodia Kiel and Amano, 2010, a small species from Alaska, shares the small pallial sinus with the species of Squiresica, but differs by having a long anterior cardinal 3a parallel to the dorsal shell margin, a more ventrally pointing cardinal 3b, and a much broader and deeper pallial sinus (see Table 1 for comparison to other pliocardini genera).

Austrogena nerudai Krylova, Sellanes, Valdés, and D’Elia, 2014, type species of Austrogena from the Southeastern Pacific, shares the presence of an escutcheon, a lunular incision, a subumbonal pit and an elongate cardinal 4b with species of Squiresica; however, it can be distinguished from these by the complete lack of a pallial sinus (Krylova et al. 2014). The oldest vesicomyid, “Archivesica cf. tschudi” from the middle Eocene of western Washington (Amano and Kiel 2007) is very small and Archivesica-like, but it has a low umbo and lacks a pallial sinus. Hubertschenkia Takeda, 1953, reaches 90 mm in length and is thus much larger than Squiresica. Further differences include the cardinal 3b, which points downwards or slightly anteriorly in Hubertschenkia, but posteriorly in Squiresica, and Hubertschenkia has a posterior nymphal ridge, absent in Squiresica (Takeda 1953; Amano and Kiel 2007). Other pliocardins sharing the small sized shell with Squiresica are Pliocardia Woodring, 1925, and Isorropodon Sturany, 1896. Both genera have an elevated umbo and a lunular incision, but Isorropodon lacks a pallial sinus and Pliocardia has a posterior ridge (Sturany 1896; Woodring 1925; Cosel and Salas 2001; Krylova and Janssen 2006; Amano and Kiel 2007). Isorropodon is less elongate than Squiresica, and all cardinal teeth of Isorropodon are thin and more or less parallel to the dorsal shell margin (e.g., Cosel and Salas 2001), in contrast to the radiating teeth of Squiresica. Pliocardia is more rounded than Squiresica, it features a posterior ridge on the outside of the shell, lacking in Squiresica, and its cardinal 3b is shorter and more compressed than that of Squiresica. The Pleistocene Arctic species Archivesica arctica Hansen, Hoff, Sztybor, and Rasmussen, 2017, has stronger and more radiating teeth than the species of Squiresica, a very distinct, pointed pallial sinus, and reaches much larger size (55–67 mm compared to 40 mm in the species of Squiresica).

A further species that could potentially belong to Squiresica is Pleurophopsis lithophagoides Olsson, 1931, from the lower Oligocene of northern Peru (Olsson 1931). That species is notably smaller than most other species of Pleurophopsis Van Winkle, 1919 (see Kiel et al. 2020: table 1) but is in the size range of the species of Squiresica. It also has a similar elongate shape and is rather flat like Squiresica knapptonensis. The cardinal 3a of Pleurophopsis lithophagoides remains unknown, as well as the presence or absence of a pallial sinus (Olsson 1931; Kiel et al. 2020), and hence a potential assignment to Squiresica remains unresolved.

Stratigraphic and geographic range.—Oligocene, Pacific Coast of North America, from Alaska to Washington State.

Squiresica knapptonensis (Amano and Kiel, 2007) comb. nov.

Figs. 2, 3.

1993 Calyptogena (Calyptogena) chinookensis Squires and Goedert, 1991; Goedert and Squires 1993: 74, fig. 4.

Type material: Fragment of right valve with preserved hinge dentition, length 13.5 mm+, height 7.0 mm, USNM 534954.

Type locality: LACMIP loc. 5843, beach terrace of the Columbia River near Knappton, Washington State, USA.

Type horizon: Upper Oligocene part of the Lincoln Creek Formation.
Material.—Numerous specimens (figured: NRM PAL Mo 195149–195155) from the West Fork Satsop seep deposit, lower Oligocene, Lincoln Creek Formation, western Washington, USA.

Description.—Elongated, weakly inflated, small shell, reaching little over 20 mm in length, H/L-ratio 0.46–0.60, W/H-ratio 0.61–0.65; umbo slightly elevated and moderately coiled, positioned at anterior 20–25% of shell length; external ligament opisthodetic, occupying >60% of postero-dorsal margin; anterior adductor scar D-shaped, its posterior margin thick; posterior adductor scar nearly round; pallial line impressed anteriorly, commarginal, forming a small indentation right beneath posterior adductor scar.

Fig. 2. The vesicomyid bivalve *Squiresica knapptonensis* (Amano and Kiel, 2007) from the West Fork Satsop seep deposit, lower Oligocene, Lincoln Creek Formation, western Washington, USA. A. NRM PAL Mo 195149, articulated specimen with partially preserved shell, in lateral (A1) and dorsal (A2) views. B. NRM PAL Mo 195150, left valve embedded in matrix, with partially preserved shell; B2, close-up showing pallial line and anterior adductor muscle scar (dotted line). C. NRM PAL Mo 195151, left valve embedded in matrix, with partially preserved shell and with posterior adductor muscle scar barely visible (dotted line). D. NRM PAL Mo 195153, articulated specimen showing inflation and ligament. E. NRM PAL Mo 195152, small specimen with fully preserved shell, view on outer shell surface. F. NRM PAL Mo 195154, right valve embedded in matrix, with partially preserved shell, showing pallial line and anterior adductor muscle scar. G. NRM PAL Mo 195155, left valve with mostly preserved shell.

Fig. 3. The vesicomyid bivalve *Squiresica knapptonensis* (Amano and Kiel, 2007) from the upper Oligocene part of the Lincoln Creek Formation at Knappton, along the Columbia River, western Washington, USA. A. Holotype USNM 534954, left valve showing external surface (A1) and hinge (A2). B. Paratype USNM 534956, left valve showing external surface (B1) and hinge (B2). C. USNM 534955, posterior part of a left valve showing external surface (C1) and the posterior end of the nymphal ridge (C2). All images (except C2) from Amano and Kiel (2007).
Regarding shell characters, the species of *Squiresica* share more with the geochronologically oldest vesicomyid, “*Plio-cardia cf. tschudi*” (formerly identified as *Archivesica cf. tschudi*) than with the type species of *Archivesica, A. gigas*. Presently, *Squiresica* is restricted to Oligocene strata of the northeast Pacific region, with a potential extension to northern Peru (*Pleurophopsis lithophagoides*). Notably, no species assignable to *Squiresica* is known from the well-investigated fossil record of Japan, where the dominant vesicomyid at Oligocene seep deposits is the much larger (up to 90 mm long) genus *Hubertschenkia* (Majima et al. 2005; Amano and Kiel 2007, 2010, 2011; Amano et al. 2013, 2019). This emphasizes the differences among vesicomyids between eastern and western Pacific seep communities during Cenozoic times (Amano et al. 2019), contrary to the present-day situation with several vesicomyid species known from both sides of the North Pacific Ocean (Kojima et al. 2004; Audzijonyte et al. 2012). This is in remarkable contrast to the bathymodiolin mussels, the other major group of seep-inhabiting bivalves. At least one bathymodiolin species, “*Bathymodiolus* inouei” Amano and Jenkins, 2011, occurred in both Japan and Washington during the Oligocene (Amano and Jenkins 2011; Kiel and Amano 2013), but no bathymodiolin species is shared between the two regions today (Duperron 2010; Lorion et al. 2013; McCowin et al. 2020). Reasons for these contrasting patterns remain to be investigated.

Acknowledgements

We thank Green Diamond Resources for continuing to allow access to localities on their land, and Mark Golliet (Green Diamond, Shelton, Washington office) for facilitating this access. We are grateful for Columbia Land Trust for allowing access to the Knappton localities. We also thank Kazutaka Amano (Joetsu University of Education, Japan) and an anonymous reviewer for their constructive comments. Financial support was provided by Vetenskapsrådet (Swedish Research Council) through grant 2016-03920 to SK.

References

