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New Pleistocene bird fossils in Taiwan reveal  
unexpected seabirds in East Asia
SIAO-MAN WU, TREVOR H. WORTHY, CHIH-KAI CHUANG, and CHIEN-HSIANG LIN

Wu, S.-M., Worthy, T.H., Chuang, C.-K., and Lin, C.-H. 2023. New Pleistocene bird fossils in Taiwan reveal unexpected 
seabirds in East Asia. Acta Palaeontologica Polonica 68 (4): 613–624.

The island of Taiwan, with its diverse microclimates and key position on the East Asian-Australasian Flyway, attracts 
numerous bird enthusiasts due to its diverse avian fauna. Nevertheless, due to the scarcity of fossil records, there is a 
significant knowledge gap between modern and ancient avifaunas in Taiwan. Currently, there is only a single described 
Pleistocene fossil; it is attributed to Phasianidae. To address this gap, this study describes two new bird fossils, a left 
humerus and a left tibiotarsus, and discusses them in detail herein. The fossils were collected from the Liuchungchi 
Formation (Early Pleistocene, 1.95–1.35 Ma) in Niubu, Chiayi, southwestern Taiwan, which represents a neritic envi-
ronment. The fossils are identified as from species of Gaviidae (loons), with the humerus belonging to an undetermined 
species of Gavia and the tibiotarsus to Gavia stellata. Loons are seabirds that are primarily distributed in high- and 
middle latitudes of the Northern Hemisphere. In addition, these birds are extremely rare in modern Taiwan: records are 
scarce and most are limited to northern and northeastern Taiwan since the 1860s, indicating that the modern Gavia birds 
only occasionally visit Taiwan. All known Pleistocene fossils of species of Gavia from the northern West Pacific come 
from Japan. The Taiwan fossils of Gavia provide valuable bird evolutionary and paleobiogeographic information for the 
subtropical West Pacific and may imply the presence of a distinct avifauna in the region during the Early Pleistocene.
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Introduction
Seabirds inhabit marine environments and forage for fish, 
squid and krill as their primary diet. They are diverse, with 
some species also distributed to freshwater environments 
(BirdLife International 2023; Mayr 2022; Tyrberg 1998). 
They play a vital role in indicating the health of marine hab-
itats due to their high trophic level and long-distance flights 
to locate ideal foraging habitats (Croxall et al. 1999, 2012; 
Piatt et al. 2007; Parsons et al. 2008). Therefore, oceano-
graphic dynamics at geological scales have driven the evo-
lution and distribution of seabirds (Warheit 1992; Block 
et al. 2011; Clay et al. 2017; Drummond et al. 2021). The 
Pacific Ocean and surrounding coasts have supported a 
high diversity of seabirds through the Cenozoic (BirdLife 
International 2023). Based on fossil records, seabirds ap-
pear to have evolved and diversified in the North Pacific 

region early in the Eocene and Oligocene, and continued 
to thrive during the Miocene and Pliocene. Examples in-
clude Charadriiformes (Miller 1931), Gaviiformes (Olson 
and Rasmussen 2001), Procellariiformes (Mayr 2015; Mayr 
and Goedert 2017), and plotopterids, flightless wing-pro-
pelled divers in Suliformes (Goedert 1988; Olson and Hase
gawa 1996; Kimura et al. 1998; Goedert and Cornish 2002; 
Sakurai et al. 2008; Dyke et al. 2011; Mayr et al. 2015; 
Mayr and Goedert 2018, 2022; Ohashi and Hasegawa 2020). 
During the Pleistocene, the fossil records of seabirds be-
come more diversified with modern lineages, but most are 
restricted to the Northeast Pacific (Miller 1914, 1925, 1930; 
Howard 1936, 1949, 1958; Guthrie 1992, 2005; Collins et al. 
2018). In the Northwest Pacific, diverse Pleistocene seabird 
faunas have been reported from Japan (Hasegawa et al. 
1988; Watanabe and Matsuoka 2015; Watanabe et al. 2016, 
2018a, b, 2020; Matsuoka and Hasegawa 2018; Aotsuka et 
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al. 2022), and a few examples come from Russia (Harington 
1978; Tyrberg 1998).

Taiwan is a subtropical island (~20° N) in the Northwest 
Pacific where many seabirds can be found (Xiao and Li 
2022). Though well-known for its diverse modern avifauna, 
little is known about its ancient birds due to the extreme 
rarity of bird fossils. The Western Foothills of Taiwan has 
several fossil localities that sample mainly marine sedimen-
tary environments, making it challenging to discover bird 
fossils (Lin et al. 2021). The only published bird fossil re-
cord to date is a phasianid tarsometatarsus from the Middle 
Pleistocene of southern Taiwan (Tsai and Mayr 2021).

Recently, two previously undescribed Early Pleistocene 
bird fossils from southwest Taiwan were found in the Chiayi 
Municipal Museum. This paper aims to describe these spec-
imens in detail by comparing their morphology with mod-
ern specimens and investigate their correspondence with the 
whole avifauna in the Pleistocene of the Northwest Pacific.

Institutional abbreviations.—CMM, Chiayi Municipal 
Museum, Chiayi, Taiwan; NHMUK, Natural History Mu
seum, Tring, UK; YIO, Yamashina Institute for Ornithology, 
Abiko, Chiba, Japan.

Geological setting
The fossils were collected from Niubu, Chiayi, southwest 
Taiwan (Fig. 1). The Niubu area is renowned for its rich 
deposits of marine fossils (Hu 1989; Tao 1993; Hu and Tao 
1996, 2004; Xue 2004; Buckeridge et al. 2018; Lin et al. 
2018, 2022); some terrestrial mammalian fossils and frag-
ments of carbonized woods are also known (Xue 2004). The 
locality is along the Bazhang River where the Liuchungchi 
Formation is widely exposed (Lin et al. 2022: figs. 1, 2). The 
Liuchungchi Formation is composed of light gray muddy 
siltstone intercalated with dark gray shale or sandy shale, and 
the depositional environment sequence reflects a shoreface 
environment from offshore transition zone to inner offshore 
(Chang 2008; Chen 2016). Because the exact stratigraphic 
localities of the fossil specimens (Fig. 2) are uncertain, we 
conducted a pilot nannofossil analysis to constrain the age 
of the two fossils. Approximately 20 mg of sediments on 
the surfaces of the fossils and inside each of the shafts were 
removed. Then two sediment subsamples for each bird fos-
sil were prepared and investigated for nannofossils using 
polarized light microscopy (Zeiss Axioscope Microscope), 
following the procedures of Gartner (1969). However, no 
nannofossils were found in any of the samples. A previous 
calcareous nannofossil biostratigraphic analysis of the south-
ern Liuchungchi Formation identified the first appearance 
datum (FAD) Gephyrocapsa oceanica (~1.7 Ma) and the last 
appearance datum (LAD) Discoaster brouweri (~1.95 Ma) 
events (Chi 1980; Huang and Ting 1981), but a biostrati-
graphic study of the northern Liuchungchi Formation, where 
Niubu is located, has not been conducted. Chen et al. (2011) 

studied both paleomagnetic and sequence stratigraphic data 
of the whole Liuchungchi Formation and constrained the 
age of the formation to 1.90–1.35 Ma. Therefore, we use the 
gross age 1.95–1.35 Ma for our fossils (Fig. 3).

Material and methods
The fossils were collected during the 1980s–2000s by the 
private collector Wen-Ji Xue, who then donated them to the 
Chiayi Municipal Museum (CMM), Chiayi, Taiwan. The 
fossils have been cataloged under CMM 2123 and CMM 
2124. The two bird fossils are the well-preserved distal ends 
of a left humerus and a left tibiotarsus, respectively (Fig. 2).

To uncover the bone morphology covered by the sedi-
ments, computed tomography (CT) was applied on the bird 
fossils using SkyScan 1276 (Bruker microCT, Kontich, 
Belgium) at the Taiwan Mouse Clinic, Academia Sinica and 
Taiwan Animal Consortium, Taiwan. The voltage, current, 
and scan resolution of X-ray source were set to 100 kV, 200 
μA, and 20.5 μm, respectively. The filters Al and Cu were 
used. After scanning was completed, the image process-
ing algorithms following Wang et al. (2015) were applied 
to the 3D raw images to build the 3D models. The widths 
and depths of the bird fossils were obtained by using cali-
pers while avoiding broken surfaces. The measurements of 

Fig. 1. Geological setting of Taiwan area and Niubu area; the locality of the 
two bird fossils is marked with rectangle (modified after Lin et al. 2022).
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CMM 2123 include: (i) the dorsoventral length of the shaft 
from the cranial view as the shaft width; (ii) the cranio-
caudal length from the dorsal view of the shaft as the shaft 
depth; (iii) the length between the ventrodistal face of the 
condylus ventralis and the dorsodistal face of the condylus 
dorsalis from the cranial view as the distal width; (iv) the 
maximal craniocaudal length of the condylus dorsalis from 

the dorsal view as the distal depth. The measurements of 
CMM 2124 include: (i) the mediolateral length of the shaft 
from the cranial view as the shaft width; (ii) the cranio-
caudal length from the lateral view of the shaft as the shaft 
depth; (iii) the length between the medial face of the con-
dylus medialis and the lateral face of the condylus lateralis 
from the cranial view as the distal width; (iv) the maximal 

Fig. 2. The fossils of gaviid seabirds from Niubu, Chiayi, Taiwan, Liuchungchi Formation, Lower Pleistocene. A. Gavia sp., CMM 2123, distal left 
humerus in cranial (A1, A2), dorsal (A3), caudal (A4), ventral (A5), and distal (A6) views. B. Gavia stellata (Pontoppidan, 1763), CMM 2124, distal left 
tibiotarsus in cranial (B1, B2), lateral (B3), caudal (B4), medial (B5), and distal (B6) views. Arrows highlight the articular scar for the distal fibula.
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craniocaudal length of the condylus lateralis from the lateral 
view as the distal depth.

To compare the size variations, the measurements of 
modern specimens preserved in the Yamashina Institute for 
Ornithology, Abiko, Chiba, Japan (YIO) were obtained us-
ing the same criteria as those of the fossil specimens (see 
above). For Gavia immer (Brünnich, 1764), a species not from 
the West Pacific and not found in YIO, the measurements 
were obtained from the images of the specimens from the 
Natural History Museum, Tring, UK (photos courtesy of 
Junya Watanabe) with a scale bar by using Adobe Photoshop 
(v. 24.1.1) and its Ruler Tool. Though it was not ideal to obtain 
measurements from photos, the scale bar was located close to 
the bone to minimize the measurement error and the obtained 
data are sufficient to show that the fossils were considerably 
smaller than the specimens in the imaged sample. The an-
atomical nomenclature follows Baumel and Witmer (1993).

Systematic palaeontology
Aves Linnaeus, 1758
Order Gaviiformes Wetmore and Miller, 1926
Family Gaviidae Allen, 1897 (Gray, 1840)
Genus Gavia Forster, 1788
Type species: Gavia immer (Brünnich, 1764); Recent, North America.

Gavia sp.
Figs. 2A, 4A.

Material.—CMM 2123 left humerus, Bazhang River, Niubu 
area, Taiwan; Liuchungchi Formation (Fig. 3); 1.95–1.35 Ma.
Measurements.—See Table 1.
Description.—The shaft of the distal left humerus CMM 
2123 is stout and rounded in cross section, and is notched 
craniodorsally proximal to the tuberculum supracondylare 
dorsale. Distally, the shaft forms an angle of 150° with re-

spect to the proximal side of the tuberculum supracondylare 
dorsale. The tuberculum supracondylare dorsale is dorsally 
prominent and proximodistally overlaps the condylus dorsalis 
such that the apex is located distal to the most proximal part 
of the condyle; the sharp and elevated apex extends smoothly 
to the shaft. The fossa m. brachialis is shallow, proximally 
elongate, and has its narrow proximal end close to the ventral 
margin of the fossil, making the fossa remarkably broad. The 
non-elevated tuberculum supracondylare ventrale is elon-
gated and narrow, and has a narrow proximal margin close to 
the fossa m. brachialis. The facet where the ligamentum col-
laterale ventrale attaches to the tuberculum supracondylare 
ventrale is poorly defined, and slight ventral expansion dis-
tally. The proximal end of the facet lies only slightly proximal 
to the level of the proximal apex of the condylus dorsalis. The 

Fig. 3. Stratigraphy of the Western Foothills of southern Taiwan (modified 
after Chen 2016; Lin et al. 2021). Grey block highlights the Liuchungchi 
Formation, wherein the bird fossils were found. Only the Early Pleistocene 
of southern Taiwan is shown.

Table 1. Measurements (in mm) of the fossils and modern Gaviidae. Number in the parentheses denotes sample size. The order of modern Gavi-
idae follows the taxonomy established by Sprengelmeyer (2014). The measurements of Gavia immer were obtained from photos taken by Junya 
Watanabe. Abbreviations: D, depth; W, width.

Measurement CMM 
2123

CMM 
2124

Gavia stellata Gavia arctica Gavia pacifica Gavia adamsii Gavia immer
Range Mean Range Mean Range Mean Range Mean Range Mean

Humerus
shaft W 8.5 NA 6.9–7.9 7.4 (4) 8.1–9.2 8.6 (7) 7.3–9.4 8.3 (14) 11.2–11.2 11.2 (1) 8.8–11.6 10.5 (6)
shaft D 7.9 NA 5.3–6.8 5.9 (4) 5.7–7.4 6.4 (7) 5.6–7.8 6.4 (14) 8.0–8.0 8.0 (1) 7.2–8.7 8.3 (6)
distal W 13.8 NA 11.0–12.0 11.6 (4) 12.3–13.9 13.1 (7) 11.5–13.4 12.6 (14) 17.0–17.0 17.0 (1) 15.0–18.0 16.7 (6)
distal D 11.0 NA 8.2–9.7 8.9 (4) 9.8–11.1 10.5 (7) 9.3–10.6 10.0 (14) 13.9–13.9 13.9 (1) 11.8–15.0 13.6 (6)
shaft W/distal W 0.6 NA 0.6–0.7 0.6 (4) 0.6–0.7 0.7 (7) 0.6–0.7 0.7 (14) 0.7–0.7 0.7 (1) 0.6–0.7 0.6 (6)

Tibiotarsus
shaft W NA 6.9 7.9–9.1 8.5 (4) 7.0–8.3 7.6 (7) 6.6–9.1 7.5 (11) 9.4–9.5 9.4 (2) 8.9–11.1 9.9 (6)
shaft D NA 4.8 4.6–5.5 5.2 (4) 4.4–5.8 5.2 (7) 4.6–6.6 5.2 (11) 6.4–7.4 6.9 (2) 6.0–6.5 6.2 (6)
distal W NA 12.0 10.6–12.3 11.6 (4) 12.1–13.1 12.7 (7) 11.8–13.8 12.3 (11) 15.3–15.8 15.5 (2) 14.0–17.9 16.4 (6)
distal D NA 12.0 11.6–13.0 12.2 (4) 12.5–14.1 13.1 (7) 11.2–13.8 12.4 (11) 16.4–16.7 16.6 (2) 14.2–17.3 15.5 (6)
shaft W/distal W NA 0.5 0.7–0.8 0.7 (4) 0.5–0.6 0.6 (7) 0.6–0.7 0.6 (11) 0.6–0.6 0.6 (2) 0.6–0.6 0.6 (6)
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Fig. 4. The humeri of the fossil gaviid seabird Gavia sp. (A) and modern Gaviidae (B–F) in cranial (A1–F1), dorsal (A2–F2), caudal (A3–F3), ventral (A4–F4), 
and distal (A5–F5) views. A. CMM 2123 from Niubu, Chiayi, Taiwan, Liuchungchi Formation, Lower Pleistocene. B. Gavia stellata (Pontoppidan, 1763) 
(YIO 79598). C. Gavia arctica (Linnaeus, 1758) (YIO 72000). D. Gavia pacifica (Lawrence, 1858) (YIO 64763). E. Gavia adamsii (G.R. Gray, 1859) (YIO 
63205). F. Gavia immer (Brünnich, 1764) (NHMUK S/1987.13.1). The images of CMM 2123 were obtained from CT. The image order of modern Gaviidae 
follows the taxonomy established by Sprengelmeyer (2014) and the photos of G. immer are courtesy of Junya Watanabe. 
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condylus ventralis is rounded with a proximodistal length 
about half of the condylus dorsalis. The two condyli are sep-
arated by a narrow incisura intercondylaris. On the caudal 
side, the sulcus scapulotricipitalis is well-defined and deep, 
with the two margins slightly converging proximally, and the 
processus flexorius is missing (Figs. 2, 4A3).
Remarks.—CMM 2123 is referred to Gavia based on (i) 
broad fossa m. brachialis that comes close to the medial mar-
gin proximally, (ii) the elongate, narrow, and non-elevated tu-
berculum supracondylare ventrale, (iii) pronounced dorsally 
projected tuberculum supracondylare dorsale, and (iv) shaft 
notched craniodorsally proximally-adjacent to the tubercu-
lum supracondylare dorsale. CMM 2123 represents an adult 
as displayed by the smooth surface, and the two condyli and 
processes with clear shapes as displayed in the modern adult 
specimens (Fig. 4). In addition, CMM 2123 shares the follow-
ing qualitative features with humeri of modern Gavia adamsii 
(G.R. Gray, 1859): the relatively sharp (in cranial aspect) apex 
of tuberculum supracondylare dorsale, the smooth dorsal 
surface on the proximal side of tuberculum supracondylare 
dorsale, narrow (less than half width of the tuberculum) and 
non-elevated proximal end of the facet for the attachment of 
ligamentum collaterale ventrale on the tuberculum supracon-
dylare ventrale, and the sulcus scapulotricipitalis with deep 
distal end and slightly proximally converged margins (Figs. 2, 
4). However, the fossil humerus is rather smaller than those of 
the examined G. adamsii specimens, and is also relative larger 
than the examined G. stellata (Pontoppidan, 1763) specimens 
(Fig. 4B, E; Table 1). This excludes the possibility of iden-
tifying the humerus as either Gavia adamsii or G. stellata. 
Gavia artica (Linnaeus, 1758) (Fig. 4C) and Gavia pacifica 
(Lawrence, 1858) (Fig. 4D), while of similar size to the fossil 
(Table 1), differ by having larger facets for the attachment of 
ligamentum collaterale ventrale on the tuberculum supracon-
dylare ventrale, having prominent scars for the palmar branch 
of m. extensor carpi radialis that interrupt the dorsal pro-
file proximal to the apex of the tuberculum supracondylare 
dorsale, and a much shallower sulcus scapulotricipitalis; G. 
immer (Fig. 4F) is larger, and has a much more massive facet 
for the attachment of ligamentum collaterale ventrale on the 
tuberculum supracondylare ventrale that more greatly sepa-
rates the fossa brachialis from the ventral shaft facies, a prom-
inent scar for the palmar branch of m. extensor carpi radialis 
that interrupts the dorsal profile proximal to the apex of the 
tuberculum supracondylare dorsale, a less rounded condylus 
ventralis, and a much broader sulcus scapulotricipitalis that is 
bound ventrally by a lower ridge.

Gavia stellata (Pontoppidan, 1763)
Figs. 2B, 5A.

Material.—CMM 2124 tibiotarsus, Bazhang River, Niubu 
area, Taiwan; Liuchungchi Formation (Fig. 3); 1.95–1.35 Ma.
Measurements.—See Table 1.
Description.—The shaft of the tibiotarsus CMM 2124 is 
slightly compressed craniocaudally with an oval cross sec-

tion, and the distal end expands medially, with and the con-
dylus medialis extending slightly further distally than the 
condylus lateralis. The articular scar for the distal fibula is, 
most proximally, on the lateral side of the shaft. It distally 
locates increasingly cranially and terminates near the prox-
imal end of the medial tuberculum retinaculum m. fibu-
laris. The medial tuberculum retinaculum m. fibularis is 
more elevated cranially and extends farther proximally than 
its lateral counterpart, which is prominent laterally, pro-
jecting slightly further laterally than the condylus lateralis. 
Proximally, both tubercula converge cranially, and distally, 
they converge laterally, which makes the sulcus m. fibularis 
shallow. The sulcus m. fibularis sits between the tubercula 
and faces slightly laterally. Distally, the sulcus m. fibularis 
passes caudally to a small lateral prominence at the distal 
end of the lateral tuberculum retinaculum m. fibularis. The 
medial tuberculum extends distally to join a small narrow 
laterally-facing crest and hence to the condylus lateralis at 
its proximolateral point. The effect of this is that proximally 
the sulcus m. fibularis is enclosed by medial and lateral 
tubercula, but at the level of the proximal margin of the 
pons supratendineus, the sulcus passes onto the lateral shaft 
facies. A distinct sulcus sits adjacent to the proximal end of 
condylus lateralis and is bounded laterally by the distal end 
of the medial tuberculum retinaculum m. fibularis. This 
sulcus is interpreted as the distolateral insertion scar of the 
transverse ligament. The pons supratendineus is wide prox-
imodistally, and its proximomedial side has a rounded and 
elevated insertion scar, for the proximomedial insertion of 
the transverse ligament. The canalis extensorius is centered 
on the shaft and opens widely proximodistally between the 
condyli, and is close to the condylus medialis.
Remarks.—The fossil tibiotarsus displays several character-
istics that are typical of Gavia: (i) parallel condyli that are 
proximodistally shorter than the distal width of the bone and 
are medially inclined distally, (ii) proximally-elevated me-
dial and laterally-projected lateral tuberculi retinaculum m. 
fibularis, with a shallow sulcus m. fibularis in-between, (iii) 
a proximodistally wide pons supratendineus, (iv) a rounded 
scar abutting the proximomedial margin of the pons supra-
tendineus for the proximomedial insertion of the transverse 
ligament, (v) a pit sits beside the end of the thin ridge imme-
diately proximal to the condylus lateralis for the distolateral 
insertion of the transverse ligament, (vi) a wide opening of 
the canalis extensorius which is aligned proximodistally 
between the condyli (not proximal to the condyli) and is me-
dially close to the condylus medialis, and (vii) a proximodis-
tally short incisura intercondylaris with respect to the adja-
cent condyli. The fossil is similar to G. stellata, especially 
regarding the fact that the caudomedial margin of the con-
dylus medialis lacks a caudomedially prominent rounded 
projection as seen in all the other modern gaviids compared 
(Fig. 5). This characteristic clearly separates the fossil and 
G. stellata from the other extant species of Gaviidae. While 
the mediolateral width of the shaft with respect to the distal 
end of the fossil in the cranial view seems to be smaller than 
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Fig. 5. Tibiotarsi of the fossil gaviid seabird Gavia stellata (Pontoppidan, 1763) (A) and modern Gaviidae (B–F), in cranial (A1–F1), lateral (A2–F2), cau-
dal (A3–F3), medial (A4–F4), and distal (A5–F5) views. A. CMM 2124 from Niubu, Chiayi, Taiwan, Liuchungchi Formation, Lower Pleistocene. B. Gavia 
stellata (Pontoppidan, 1763) (YIO 79598). C. Gavia arctica (Linnaeus, 1758) (YIO 79597). D. Gavia pacifica (Lawrence, 1858) (YIO 60621). E. Gavia 
adamsii (G.R. Gray, 1859) (YIO 74354); F. Gavia immer (Brünnich, 1764) (NHMUK S/1987.13.1). Arrows on C4–F4 and C5–F5 indicate the caudomedial 
process present in these taxa that is lacking in G. stellata. The image order of modern Gaviidae follows the taxonomy established by Sprengelmeyer (2014) 
and the photos of G. immer are courtesy of Junya Watanabe.
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G. stellata (see Table 1), we think this disparity falls within 
intraspecific scope and, therefore, we prefer to identify the 
fossil as G. stellata (Table 1).

Discussion
Ecology of gaviids and paleoenvironmental interpreta-
tion.—The Gaviidae (loons), the modern representatives of 
Gaviiformes, include five species: Gavia stellata, G. artica, 
G. pacifica, G. adamsii, and G. immer (HBW and BirdLife 
International 2022), all of which are migratory seabirds that 
are entirely limited to the Northern Hemisphere. They mate 
and breed near mid- and high-latitude lakes during the sum-

mer, and migrate south in the winter, when they predomi-
nantly stay at sea or near sea coasts. Fishes are their main diet, 
but crustaceans, mollusks, worms, and plants are also com-
mon (BirdLife International 2023). In the Northwest Pacific, 
all species of Gavia except G. immer are distributed around 
most islands and along the coastlines of the Asian continent 
but not in Taiwan, where the subtropical-tropical climate at 
20° N is not suitable for them. During the past 160 years, 
only two Gavia species, G. arctica and G. stellata, have been 
rare occasional visitors to mainly the northeastern parts of 
Taiwan (Fig. 6; SOM 1: table S2, Supplementary Online 
Material available at http://app.pan.pl/SOM/app68-Wu_
etal_SOM.pdf) (Swinhoe 1863; Yen 1984; Chu 1996; Chao 
2006; National Taiwan Museum 2023; Taiwan Biodiversity 

Fig. 6. Records of Gaviidae in Taiwan. The records are displayed as the number of occurrences (1–10) and dates (year or Ma). Records between 1861–
1862 and between 1970–1971 are not included because the accurate localities are not accessible. See SOM 1: table S2 for details.
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Fig. 7. Distribution of Pleistocene records of Gaviidae. A. The distribution around the world. Regional distribution in the Northwest Pacific (B), the Northeast 
Pacific (C), the Northwest Atlantic (D), and the Northeast Atlantic (E). Taxa with uncertainty are grouped into Gavia spp. See SOM 1: table S3 for details.
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Network 2023). Only two seabird fossils have been found 
in the Liuchungchi Formation and it seems unlikely that a 
species as rare as modern gaviids are in the region today 
would be represented in such a meagre fossil record. By this 
reasoning, the fossils likely represent a greater abundance 
of gaviids in the region in the Early Pleistocene. This in 
turn suggests that the two fossil Gavia species were depos-
ited during a cooler climate interval during the oscillation 
of glacial-interglacial periods (Lisiecki and Raymo 2005; 
Huybers 2006; Liautaud et al. 2020; Vaucher et al. 2021). If 
so, this suggests that the Early Pleistocene paleo-avifauna 
in southwestern Taiwan included regular visitors of species 
of Gavia reflecting a period when the Gaviidae expanded 
their distribution south to the subtropical Northwest Pacific 
during the relatively cold time of the Early Pleistocene. The 
change in oceanic currents associated with cooler glacial 
period climate, e.g., the Kuroshio Current in the Northwest 
Pacific, may have brought upwellings that supported both 
marine and coastal ecosystems in the ancient Taiwan Strait. 
This hypothesis is supported by a highly diverse fossil record 
of rays, sharks and bony fishes during the Early Pleistocene 
in the Liuchungchi Formation (Lin et al. 2018, 2021, 2022).

Fossil gaviids in Taiwan and their significance to the 
gaviid records in the Pleistocene.—The humerus CMM 
2123 we identify as an indeterminate species of Gavia is 
smaller than the few modern specimens of G. adamsii we 
compared it to, but is more similar in qualitative features 
to this modern species than it is to any other modern Gavia 
species. These observations may be explained by three pos-
sible reasons. First, the specimen represent the small end of a 
larger size range than our samples of modern G. adamsii rep-
resents; however modern measurements of birds do not sup-
port this (Uher-Koch et al. 2020; US Fish & Wildlife Service 
2023). Second, the fossil derives from birds in the Early 
Pleistocene population that consisted of smaller individuals 
than their modern counterparts. Third, this fossil represents 
an extinct sister-species to G. adamsii, characterized by the 
same qualitative features and smaller size. Resolution of this 
issue will require further fossils. The fossil records of G. 
adamsii are quite scarce, restricted to the North Pacific, 
and all come from the Holocene (Friedmann 1934a, b, 1935, 
1941). In contrast, G. stellata has numerous Pleistocene 
fossil records from Europe, Asia and the Northeast Pacific 
(Fig. 7, SOM 1: table S3). The relative abundance of fossil 
records for G. stellata and G. adamsii is consistent with their 
modern distribution, as the former is widely distributed in 
mid- and high-latitude areas, whereas the latter is mainly 
found in a narrower zone in coastal regions of high-latitude 
areas (BirdLife International 2023). Most Pleistocene gaviid 
records are restricted to mid- and high-latitude regions of 
the Northern Hemisphere, and a few records from low-lati-
tudes are from Mexico (Corona Martínez 2009) and Florida 
(Brodkorb 1953, 1963; Woolfenden 1959; Emslie 1995, 1998) 
(Fig. 7). The gaviid fossils from Taiwan provide another 
low-latitude occurrence, the first for the Pacific.

Conclusions
The two fossil species of Gavia from Taiwan, G. stellata, 
and an indeterminate species, are the first Pleistocene re-
cords of Gaviidae in the subtropical Northwest Pacific. 
They not only suggest a southern expansion of Pleistocene 
Gaviidae populations in the Northwest Pacific, but also hint 
at a distinct Pleistocene paleoavifauna in southern Taiwan, 
where the current subtropical climate is not suitable for 
Gaviidae. Therefore, the climate may have been colder 
when the two birds were alive in the Early Pleistocene, and 
the ancient Taiwan Strait may have been more productive 
and supported seabirds like Gaviidae and the greater diver-
sity of fish evidenced by fossils. One of the two fossils is a 
species of Gavia which is much smaller than G. adamsii, yet 
similar in morphological features. To solve the taxonomic 
implications of the size disparity between it and G. adamsii 
requires more fossil remains.
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