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The tyrannosaurine Daspletosaurus contains three recognized species from the Campanian of Montana and Alberta: 
Daspletosaurus torosus, Daspletosaurus wilsoni, and Daspletosaurus horneri. The recently named D. wilsoni has 
been proposed to represent a transitional anagenetic form between D. torosus and D. horneri, a hypothesis contingent 
on both the stratigraphic succession of these three taxa and the presence of an intermediate morphology in D. wilsoni. 
Adequate testing of this hypothesis is hampered by limited knowledge of the morphological variation and stratigraphic 
ranges of both D. wilsoni and D. torosus. We introduce a new, ontogenetically mature specimen of Daspletosaurus from 
the upper Campanian Coal Ridge Member of the Judith River Formation of central Montana that is well constrained to 
~76.3–75.8 Ma. This specimen has a combination of features not yet reported in Daspletosaurus, increasing the known 
range of morphological disparity within this genus. The cranial morphology and stratigraphic position of this specimen 
precludes its referral to D. horneri. Although stratigraphically equivalent to D. wilsoni, this specimen lacks one of the 
three characters purported to distinguish that taxon from D. torosus (dorsal quadrate process of quadratojugal broadly 
visible laterally). We propose that this character is intraspecifically variable within Daspletosaurus and therefore not 
diagnostic, thus weakening the case that D. wilsoni is distinct from D. torosus. Additional specimens with stratigraphic 
controls are necessary to determine if D. wilsoni is a valid taxon.
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Introduction
Tyrannosauroidea was a successful radiation of Laurasian 
coelurosaurian theropods that originated in the Jurassic 
as small-bodied forms and ultimately gave rise to the 
Tyrannosauridae, a clade characterized by large to gigantic 
body size, enlarged skulls, and famously reduced forelimbs 
(Brusatte et al. 2010). Tyrannosaurids were the dominant 

terrestrial predators of Asia and Western North America 
(Laramidia) in the final Campanian and Maastrichtian stages 
of the Cretaceous (Loewen et al. 2013). Their rich fossil re-
cord and popular appeal have inspired a wealth of research 
and speculation relating to their life appearance (e.g., Cullen 
et al. 2023), ontogeny (e.g., Carr 1999), ecology (e.g., Farlow 
et al. 2023), behavior (e.g., Witmer and Ridgley 2009), bio-
mechanics (e.g., Gignac and Erickson 2017), biogeography 
(e.g., Thomson et al. 2013), evolutionary tempo and mode 
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(e.g., Warshaw and Fowler 2022), and phylogenetic relation-
ships (e.g., Loewen et al. 2013). Two subfamilies of tyranno-
saurids are recognized, the Albertosaurinae represented by 
Gorgosaurus and Albertosaurus from the upper Campanian 
and lower Maastrichtian of Alberta, respectively, and the 
Tyrannosaurinae, the last surviving clade of tyrannosaurids 
that includes the gracile alioramins as well as Tyrannosaurus 
rex and its close relatives such as Daspletosaurus and 
Tarbosaurus (Brusatte and Carr 2016). 

In the more than half-century that has passed since the 
inaugural description of Daspletosaurus torosus Russell, 
1970, surprisingly little descriptive work has been conducted 
on this species (although see Paulina-Carabajal et al. 2021). 
Recent discoveries have led to the recognition of two new 
species of Daspletosaurus, D. horneri Carr et al., 2017, and 
D. wilsoni Warshaw & Fowler, 2022, from the Two Medicine 
and Judith River formations of Montana, respectively (Fig. 1). 
Horner et al. (1992) hypothesized that D. torosus, D. horneri 
(then unnamed), and Tyrannosaurus rex represented a suc-
cessive evolutionary series that evolved through anagenesis. 
Anagenesis can be supported if the taxa in question are close 
phylogenetic relatives, do not overlap stratigraphically, and 
occupy similar geographic ranges (Carr et al. 2017; Zietlow 
2020). Carr et al. (2017) rejected an anagenetic relationship 
between Daspletosaurus and Tyrannosaurus, but found sup-
port for evolution through anagenesis between D. torosus 
and D. horneri. Warshaw and Fowler (2022) introduced D. 
wilsoni as a transitional form that evolved from D. torosus 
and into D. horneri through anagenesis (D. torosus → D. 
wilsoni → D. horneri), a claim partly contingent on the hy-
pothesized lack of temporal overlap between these taxa, with 
D. torosus at ~77 Ma, D. wilsoni at ~76.5 Ma, and D. horn­
eri at ~75.1 Ma (Warshaw and Fowler 2022). A subsequent 
study found that the phylogenetic position of each species 
conflicted with their stratigraphic position, indicating the ex-
istence of multiple contemporary lineages of Daspletosaurus 
rather than a series of successive sister taxa (Scherer and 
Voisculescu-Holvad 2024). Another phylogenetic analysis 
(Warshaw et al. 2024) incorporating additional specimens, 
however, found additional support for the phylogenetic re-
sults of Warshaw and Fowler (2022) and, by extension, the 
hypothesis that Daspletosaurus evolved through anagenesis.

Here we report the discovery of a new specimen of 
Daspletosaurus from the Judith River Formation in central 
Montana. At ~76.3–75.8 Ma, the new specimen is chrono-
logically older than the oldest occurrence of D. horneri 
(~75.2  Ma), and younger than the holotype of D. torosus 
(~76.8 Ma), falling within the temporal range of D. wilsoni 
(~76.5–75.6 Ma) proposed by Warshaw et al. (2024: fig. 6). 
This specimen can be excluded from D. horneri based on 
cranial morphology, but has numerous features present 
in both D. torosus and D. wilsoni. This specimen shares 
one character state (dorsal quadrate process of quadrato-
jugal not broadly visible laterally) with D. torosus to the 
exclusion of D. wilsoni. If this character is to be considered 
diagnostic, this specimen cannot be assigned to the con-

temporary D. wilsoni, thereby weakening the hypothesis 
that Daspletosaurus consists of a single anagenetic lineage. 
Because this character state is apparently variable in D. hor­
neri, however, and can only be assessed in one specimen 
of D. torosus (CMN 8506), we instead suggest that this 
character is intraspecifically variable in Daspletosaurus 
and therefore insufficient for distinguishing D. wilsoni from 
D. torosus. If the new specimen is assigned to D. wilsoni, 
therefore, only two characters (anteroposteriorly narrow or-
bit, “inflated rostrodorsal ala” of lacrimal) may distinguish 
D. wilsoni from the holotype of D. torosus.
Institutional abbreviations.—AMNH, American Museum of 
Natural History, New York, USA; BDM, Badlands Dino
saur Museum, Dickinson, USA; CMC, Cincinnati Museum 
Center, USA; CMN, Canadian Museum of Nature, Ottawa, 
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Fig. 1. A. Location of the study area within North America. B. Location of 
Daspletosaurus sp. (CMC VP15826) in the Judith River Formation (JRF) 
of Montana. The new specimen was preserved in JRF strata just south 
of the Upper Missouri River Breaks National Monument (UMRBNM). 
Additional specimens discussed in the text include Daspletosaurus toro­
sus (CMN 8506) from the Oldman Formation, Belly River Group (BRG) 
in Dinosaur Provincial Park (DPP), Daspletosaurus wilsoni (BDM 107) 
from JRF exposures north and east of the UMRBNM, and Daspletosaurus 
horneri (MOR 590) from the Two Medicine Formation (TMF) in north-
western Montana (Rogers et al. 2025). Gray color represents the outcrop 
belt of Campanian terrestrial strata in the region. Modified from Rogers et 
al. (2024).
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Canada; FMNH, Field Museum of Natural History, Chicago, 
USA; MOR, Museum of the Rockies, Bozeman, USA; 
NHMUK, Natural History Museum of the United Kingdom, 
London, UK; RSM, Royal Saskatchewan Museum, Regina, 
Saskatchewan, Canada; TMP, Royal Tyrrell Museum, Drum
heller, Canada; UALVP, University of Alberta Laboratory for 
Vertebrate Paleontology, Edmonton, Canada; UMNH, Natu
ral History Museum of Utah, Salt Lake City, USA; UWBM, 
University of Washington, Burke Museum of Natural History 
and Culture, Seattle, USA.

Geological setting
The dinosaur assemblage of the Judith River Formation has be-
come better known in recent years due to a resurgence of field-
work and collecting on both public and private lands as well 
as reanalysis of historical collections. Ornithischian dinosaur 
taxa currently recognized from the Judith River Formation 
include the hadrosaurids Brachylophosaurus canadensis 
(Cuthbertson and Holmes 2010), Corythosaurus  sp. (Taka
saki et al. 2022), Probrachylophosaurus bergei Freedman-

Woodhawk MemberA B

D

Woodhawk Member

C

D

C

Coal Ridge

Member

Coal Ridge

Member Coal Ridge

Member

Daspletosaurus
site

view from

Daspletosaurus site

Woodhawk

Member

Fig. 2. View of Daspletosaurus sp. site and associated strata in upper Judith River Formation. A. Drone view of Daspletosaurus sp. site in Coal Ridge 
Member. The fossil site is located ~15 m below the contact with the marine Woodhawk Member (contact marked by white dashed line). Locations of rocks 
featured in images C and D are indicated. B. View from the Daspletosaurus sp. site looking south toward exposures of Coal Ridge and Woodhawk mem-
bers. C. Contact between Coal Ridge and Woodhawk members on ridge adjacent to fossil site. D. View of hummocky and swaley bedding in Woodhawk 
Member near top of ridge.
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Fowler & Horner, 2015, the ceratopsids Spiclypeus shippo­
rum Mallon et al., 2016, Judiceratops tigris Longrich, 2013, 
Mercuriceratops gemini Ryan et al., 2014, Lokiceratops rangi
formis Loewen et al., 2024, Medusaceratops lokii Ryan et al., 
2010, Avaceratops lammersi Dodson, 1986, Furcatoceratops 
elucidans Ishikawa et al., 2023, and the potentially dubious 
Monoclonius crassus Cope, 1876, and Ceratops montanus 
Marsh, 1888, as well as the ankylosaurid Zuul crurivasta­
tor Arbour & Evans, 2017. Theropods currently documented 
in the Judith River assemblage include the dromaeosaurid 
Saurornitholestes (Wilson and Fowler 2020) and the tyran-
nosaurids Gorgosaurus sp. (Dalman and Lucas 2015) and 
Daspletosaurus wilsoni Warshaw & Fowler, 2022.

The new specimen (CMC VP15826) was collected 
from the Coal Ridge Member of the Judith River Forma
tion (Rogers et al. 2016) on private ranchland near Upper 
Missouri River Breaks National Monument south of the 
Missouri River in Fergus County, north-central Montana in 
2006. The skeleton was located close to the surface and was 
deeply penetrated by plant roots. Articulated and closely 
associated skeletal remains were preserved within a gray 
fine-grained silty sandstone with mudstone intraclasts im-
mediately above the base of the bone-bearing horizon in a 
deposit interpreted as a crevasse splay by Maltese (2009). 
The softness of the matrix and the minimal amount of over-
burden resulted in extensive weathering and degradation of 
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Member thins to the west, and given that the site is ~7 km west of section 91-JRT-12, we contend that alternative 1, which yields a model age of 75.81 
+0.33/-0.37 Ma, is a more reliable approximation of the age of the Daspletosaurus sp. site (see text for additional discussion). Model ages from Ramezani 
et al. (2022). Map in A based on Google Maps. Abbreviation: BF, Bearpaw Formation.



WARNER-COWGILL ET AL.—NEW SPECIMEN OF TYRANNOSAURINE DINOSAUR FROM MONTANA, USA	 163

the specimen, which sometimes obscures details of mor-
phology. Nevertheless, enough anatomical information sur-
vives to allow for adequate description and comparison with 
other specimens.

Deposits of the Coal Ridge Member both entomb the 
specimen and crop out above the quarry site (Fig. 2). 
Carbonaceous mudstones, siltstones, and fine-grained sand-
stones typify the unit in the local outcrop belt, and thin cm-
scale beds of orange ironstone are developed along some 
bed contacts. Approximately 13 m separate the new spec-
imen from the base of the overlying Woodhawk Member. 
The sharp contact between members is underlain by carbo-
naceous brown sandy mudstone and capped by fine-grained 
gray to tan sandstone (Fig. 2C). Small vertical burrows 
(3–5  mm diameter) attributable to Skolithos occur in the 
basal meter of the Woodhawk Member. Overall exposure 
is rather limited on the weathered and vegetated slopes that 
rise above the site, but indurated outcrop near the top of 
the ridge exhibits hummocky and swaley bedding consis-
tent with deposition on a shallow marine shelf impacted 
by storm waves (Fig. 2D). Exposures of the Woodhawk 
Member continue to the top of local exposure, and the con-
tact with the overlying Bearpaw Formation has not been 
identified in the immediate vicinity of the site.

The age of CMC VP15826 can be approximated in the 
context of the local stratigraphy, which was recently cali-
brated with a suite of new U-Pb zircon ages by Ramezani 
et al. (2022). Significantly, the site occurs without question 
in the Coal Ridge Member, which is positioned above the 
Judith River-Belly River discontinuity. This chronostrati-
graphically significant discontinuity, which can be tracked 
from north-central Montana to the environs of Dinosaur 
Provincial Park in southern Alberta, has been dated to 
~76.3 Ma (Rogers et al. 2016, 2024). Thus, we can confi-
dently conclude that the specimen is younger than ~76.3 Ma.

The age of CMC VP15826 can be further refined us-
ing a Bayesian age model recently developed for the Judith 
River Formation by Ramezani et al. (2022: fig. 5). To ap-
ply this model and assess the age of the specimen, it is 
essential to know the stratigraphic distance between the 
Daspletosaurus sp. site and a bounding contact of the Judith 
River Formation, in this case the top of the formation. 
Unfortunately, as clarified above, the upper contact of the 
Judith River Formation is not exposed in the local outcrop 
belt where the site occurs, but the critical distance can be ap-
proximated by tracking the base of the Woodhawk Member, 
which can be tied to the top of the formation with reasonable 
precision in nearby exposures along the Missouri River cor-
ridor (Fig. 3A).

Existing evidence indicates that the Woodhawk Member 
thins to the west, eventually pinching out and passing lat-
erally to the terrestrial Coal Ridge Member. At the unit’s 
stratotype locality (section 91-JRT-12, see Rogers et al. 2016: 
fig. 3), which is located ~8 km to the north and east of the 
Daspletosaurus sp. site (Fig. 3A), approximately 60 m of the 
sandstone-dominated Woodhawk Member are overlain by 

the Bearpaw Formation, and ~30 m of Coal Ridge strata un-
derlie the unit. Here the new Daspletosaurus sp. site would 
presumably occur ~75 m beneath the Judith River-Bearpaw 
contact (Fig. 3B, C), yielding a model age of 76.12 +0.14/-
0.47 Ma (Ramezani et al. 2022). We view this outcome as a 
maximum model age for the occurrence of CMC VP15826. 
Shifting westward approximately 7 km to section 91-JRT-7 
(see Fig. 3A), the Woodhawk Member has climbed strati-
graphically by ~30 m, thinned to ~15 m in thickness, and is 
bounded above and below by heterolithic facies of the Coal 
Ridge Member (Fig. 3B, C). Section 91-JRT-7 is positioned 
roughly along strike with the Daspletosaurus sp. quarry 
(see Fig. 3A), and here the site would fall roughly 48 m be-
neath the Judith River-Bearpaw contact, yielding a model 
age of 75.81 +0.33/-0.37 Ma (Ramezani et al. 2022). We 
consider section 91-JRT-7 a more appropriate proxy for the 
local section hosting the new Daspletosaurus sp. skeleton 
given the along-strike relationship of the site and the section. 
Moreover, the subdued nature of the Woodhawk outcrop 
on the ridge above the Daspletosaurus sp. site is consistent 
with the thinning of the unit and its intercalation within Coal 
Ridge strata. The model age of 75.81 +0.33/-0.37 Ma is there-
fore deemed a reliable approximation of the specimen’s age.

Systematic paleontology
Dinosauria Owen, 1842
Theropoda Marsh, 1881
Tetanurae Gauthier, 1986
Coelurosauria Huene, 1914
Tyrannosauridae Osborn, 1906
Tyrannosaurinae Osborn, 1906
Daspletosaurini Voris et al., 2020
Genus Daspletosaurus Russell, 1970
Type species: Daspletosaurus torosus Russell, 1970; Dinosaur Provin
cial Park, Q72, Alberta, Canada; Oldman Formation, Upper Cretaceous.

Daspletosaurus sp.
Figs. 4–10.

Material.—CMC VP15826, partial skull and nearly complete 
postcranium from the Upper Cretaceous (Late Campanian) 
Coal Ridge Member of the Judith River Formation, Fergus 
County, Montana.
Description.—The specimen CMC VP15826, is approxi-
mately 80% complete, was partially articulated when dis-
covered, and preserves portions of the skull and most of the 
vertebral column (Fig. 4). The skull and cervical vertebrae 
were situated at the erosional edge of the specimen where 
preservation was poor. No tooth bearing elements other than 
a fragment of the left maxilla are present nor is the braincase 
or skull roof, but bones of the suspensoria and palate are pre-
served. A severely weathered portion of the posterior mandi-
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ble may be present, although it is too poorly preserved to be 
described. The postcranial skeleton is very well-represented. 
Only three cervical vertebrae and a dozen or so caudal verte-
brae are lacking, the latter primarily the distalmost elements. 
Most of the ribs and chevrons are present as is most, if not 
all, of the gastral basket. The pectoral girdle is complete with 
both scapulocoracoids, as well as the furcula. The forearms 
are similarly preserved, lacking only the ungual phalanges. 
Both ilia and ischia are preserved, but not the pubes. The left 
leg lacks only pedal phalanx IV-1 and most of metatarsal III; 
the right leg was not recovered.

CMC VP15826 is very large, with a reconstructed total 
body length greater than 9 meters. The ontogenetic maturity 
of this specimen is attested to not only by its size but also 
by the complete fusion of almost all neurocentral sutures 
down to the most distally preserved caudal vertebrae, fused 
scapulae and coracoids, and in particular the extreme ru-
gosity of the bone surfaces of the neural spines. The distal 
ends of the spines, and especially the anterior and posterior 
surfaces of the spines are heavily textured with hyperosto-
ses reflecting partial ossification of the spinous ligaments. 
Similar patterning is present at the distal ends of the trans-
verse processes.

CMC VP15826 is assigned to Daspletosaurus by the pres-
ence of two cranial synapomorphies: (i) a deep keel on the 
ventral surface of the vomer and (ii) a posterior pneumatic 
recess of the palatine located posterior to the anterior margin 
of the vomeropterygoid neck (Carr et al. 2017; Voris et al. 
2020). CMC VP15826 further agrees with Daspletosaurus 
and differs from the daspletosaurin Thanatotheristes in 
having a mediolaterally thin suborbital margin of the jugal 
(Voris et al. 2020). CMC VP15826 can be excluded from 
D. horneri (Carr et al. 2017) by the presence of a maxillary 
fenestra that is anteriorly tapered, longer than tall, and dor-
sally offset from the ventral margin of the antorbital fossa, a 
ventral pneumatic recess of the squamosal that is not entirely 
undercut, the absence of a pneumatic foramen on the neck 
of the quadratojugal, the presence of a dorsal quadratojugal 

process of the jugal positioned lateral to the ventral quadra-
tojugal process, an inflation of the jugal that extends below 
the pneumatic recess, and a humerus-femur length ratio of 
~0.37 (Carr et al. 2017). CMC VP15826 differs from D. wil­
soni (sensu Warshaw and Fowler 2022; Warshaw et al. 2024) 
and agrees with D. torosus (CMN 8506) in having a medially 
directed dorsal quadrate process of the quadratojugal.

Because D. horneri and D. wilsoni have been primarily 
distinguished from D. torosus by their skulls, the present 
study focuses on, but is not limited to, cranial elements. 
A comprehensive description of the well-represented post-
cranial skeleton of CMC VP15826 is beyond the scope of 
this paper but will be the subject of a future study. A table 
of measurements of the postcranial skeleton is provided in 
SOM (Supplementary Online Material available at http://
app.pan.pl/SOM/app70-WarnerCowgill_etal _SOM.pdf).

A humerus-to-femur length ratio of ~0.34 has been con-
sidered autapomorphic of D. horneri (Carr et al. 2017). 
The holotype of D. torosus does not preserve a femur, so 
Carr et al. (2017) used the length of the skull and the ilium 
as a proxy and found ratios of 0.34 and 0.32, respectively. 
The femur of CMC VP15826 is 97 cm long as measured 
from the proximal surface to the medial condyle. The right 
humerus is 34 cm, whereas the left humerus is 38 cm, a 
difference that is probably a result of postmortem distor-
tion. By averaging the length of both humeri, the humerus 
to femur length ratio in the present specimen is ~0.37, a 
ratio most similar to Gorgosaurus libratus as described 
by Lambe (1917), but much higher than Tyrannosaurus rex 
(0.29, Brochu 2003) and Tarbosaurus bataar (0.26, Carr et 
al. 2017). The ilia are 108 cm (right) and 111 cm (left) in 
length, providing a femur-to-ilium length ratio of 0.87, and 
a humerus-to-ilium length ratio of ~0.33. Carr et al. (2017) 
report that D. horneri has stout epipophyses that either 
just reach or only slightly project past the postzygapoph-
yses, whereas D. torosus is coded in that study as having 
long epipophyses. Though incompletely preserved, the epi-
pophyses on the anterior-mid cervicals of CMC VP15826 

represented elements

missing elements

1 m

Fig. 4. Skeletal reconstruction of the tyrannosaurine dinosaur Daspletosaurus sp. (CMC VP15826) from the Upper Cretaceous (Late Campanian) Coal 
Ridge Member of the Judith River Formation, Fergus County, Montana. Modified from original drawing by Scott Hartman (University of Wisconsin, 
Madison, USA), courtesy of Cincinnati Museum Center.



WARNER-COWGILL ET AL.—NEW SPECIMEN OF TYRANNOSAURINE DINOSAUR FROM MONTANA, USA	 165

are short and do not reach the postzygapophyses, reflect-
ing the reported condition in D. horneri. Based on un-
published photographs of the original specimens, we have 
independently verified the observations of Carr et al. (2017) 
regarding the morphology of the cervical epipophyses in D. 
horneri and the holotype of D. torosus. Additional speci-
mens of D. torosus are, however, necessary to determine if 
the presence of long epipophyses is taxonomically informa-
tive or intraspecifically variable.

Maxilla: Although only a fragment of the left maxilla 
is present (Fig. 5A), important features are preserved. The 
fragment represents the area immediately surrounding the 
anterior part of the maxillary fenestra. As in other speci-
mens of Daspletosaurus, the promaxillary fenestra is hid-
den from lateral view and the maxillary fenestra was large. 
Although the absolute size of the maxillary fenestra is not 
known because the interfenestral strut is not preserved, it 
was greater than 98 mm in length and greater than 78 mm in 
height. The maxillary fenestra is anteriorly tapered as in D. 
torosus and D. wilsoni (Warshaw and Fowler 2022), unlike 
the round condition in D. horneri (Carr et al. 2017). As in 

D. torosus and D. wilsoni the maxillary fenestra of CMC 
VP15826 is dorsally offset from the ventral margin of the 
antorbital fossa whereas in subadult (MOR 590) and adult 
(MOR 1130) D. horneri the fenestra is positioned closer to 
the ventral margin of the antorbital fossa. The promaxillary 
fenestra measures ~13 mm in width and is ~43 mm long 
and has a ventral margin located slightly below the anterior 
corner of the maxillary fenestra. The presence of anasto-
mosing sulci on the subcutaneous surface of the maxilla, a 
synapomorphy of Daspletosaurus (Carr et al. 2017), cannot 
be assessed in CMC VP15826 due to poor preservation.

Jugal: The left jugal (Fig. 5B) is nearly complete and ca. 
480 mm long, but taphonomic distortion has left the distal 
portion of the postorbital ramus severely crushed, and the 
entire ramus bent posteriorly. This may be explained by 
the fact that the jugal was the only cranial element that was 
oriented vertically in the quarry during excavation. This 
element aligns with D. torosus rather than D. horneri in that 
the lateral inflation extends below the pneumatic recess, 
the ventral quadratojugal process is positioned medial to 
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the dorsal quadratojugal process, and the lateral maxillary 
process is visible in medial view (Carr et al. 2017).

As in D. torosus and D. wilsoni the ventral margin of 
the orbit is extremely thin mediolaterally as opposed to the 
thin but rounded margin of Lythronax argestes and the wide 
rounded margin in Thanatotheristes degrootorum (Voris et 
al. 2020; Warshaw and Fowler 2022). The posterior portion 
of the lacrimal contact is very shallowly inclined as in D. 
wilsoni and D. torosus (Warshaw and Fowler 2022), whereas 
this surface is very steep in D. horneri, albertosaurines 
(Currie 2003), and Lythronax argestes. Anterior to the orbit 
the jugal is directed straight anteriorly as in D. torosus and 
D. wilsoni (Warshaw and Fowler 2022).

The jugal of CMC VP15826 differs from the holotypes 
of D. horneri, D. wilsoni, and D. torosus in a few ways. The 
suborbital height of the jugal is much more dorsoventrally 
constricted than in the holotypes of D. torosus, D. wilsoni, 
and D. horneri. However, the same is also true for TMP 
2001.36.1, a complete skull from the Oldman Formation of 
Alberta provisionally identified as D. torosus by Voris et 
al. (2019: fig. 6B), a new taxon by Paulina-Carabajal et al. 
(2021), and most recently referred to D. wilsoni by Warshaw 
et al. (2024). The antorbital margin of the jugal in both TMP 
2001.36.1 and CMC VP15826 also share a more shallowly 
inclined dorsal margin than in D. horneri (MOR 590 and 
MOR 1130), or the holotypes of D. torosus (CMN 8506) and 

D. wilsoni (BDM 107). The proximal portion of the postor-
bital ramus of the jugal in both TMP 2001.36.1 and CMC 
VP15826 is relatively narrow anteroposteiorly, whereas in 
D. horneri, CMN 8506, and BDM 107 it is anteroposteriorly 
broad. Whereas D. torosus (CMN 8506) and D. wilsoni 
(BDM 107) have a large pneumatic opening on the maxil-
lary ramus of the jugal (pneumatic recess, Fig. 5B), in both 
CMC VP15826 and TMP 2001.36.1 they are reduced in size. 
The extreme reduction in size of the pneumatic recess in 
CMC VP15826 may be the result of an overgrowth of bone 
reflecting the advanced ontogenetic stage of this individual. 
A laterally protuberant accessory cornual process is present 
posterior to and above the primary ventral cornual process. 
This process is located well anterior to the quadratojugal 
contact and is therefore distinct from the knob that is auta-
pomorphic of Teratophoneus curriei (Carr et al. 2011). This 
process is undercut and has a rounded, convex surface. Such 
an accessory cornual process has not been reported in other 
specimens of Daspletosaurus and may be pathological.

Squamosal: The left squamosal (Fig. 6) is largely com-
plete and 216 mm in maximum length, although the an-
teroventral edge of the quadratojugal process is missing. 
In the absence of the postorbitals, it cannot be positively 
stated that the squamosal terminates posterior to the ante-
rior margin of the laterotemporal fenestra, a synapomorphy 
of Daspletosaurus (Carr et al. 2017). However, the squa-
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mosal of CMC VP15826 does not significantly differ from 
D. torosus in any important respect. As in D. torosus and 
the holotype of D. wilsoni (Warshaw and Fowler 2022), the 
anteromedial margin of the ventral pneumatic recess of the 
squamosal is not undercut, whereas this margin is autapo-
morphically undercut in D. horneri (Carr et al. 2017). A 
large foramen on the medial surface of the posterior process 
indicates that this process was pneumatic as in all species of 
Daspletosaurus.

Quadratojugal: Both quadratojugals (Fig. 7) are pre-
served, but the right is complete and well preserved, whereas 
the left is lacking half of its anterior (jugal) ramus and the 
process forming the dorsal quadrate process. The maximum 
dorsoventral height of the right quadratojugal is 217 mm 
and the length along its ventral margin is 180 mm. The 
quadratojugals agree with the holotype of D. torosus and 
differ from the holotypes of D. horneri and D. wilsoni in 
having a posteromedially directed, rather than a posterolat-
erally directed dorsal quadrate process. Unlike D. horneri, 
the anterior ramus is oriented anteroventrally rather than 
anterodorsally. It agrees with D. torosus and D. wilsoni but 
differs from D. horneri (MOR 1130) in lacking a pneumatic 
foramen on the lateral surface of the neck and in having a 

deeply notched ventral quadrate process. CMC VP15826 
shares one feature in common with D. horneri absent from 
the holotypes of D. torosus (CMN 8506) and D. wilsoni 
(BDM 107); the facet for the dorsal jugal process is partly 
obscured from lateral view whereas in CMN 8506 and BDM 
107 this facet is entirely exposed in lateral view (Warshaw 
and Fowler 2022; Fig. 7A2). The anterior margin of the an-
terior ramus of the quadratojugal is squared off, rather than 
tapered or forked.

Quadrate: Both left and right quadrates (Fig. 7B) are 
complete and relatively well preserved despite some trans-
verse crushing. They average 242 mm in maximum dor-
soventral height, 290 mm in maximum length through the 
pterygoid flange (“orbital process” of Carr et al. 2017), and 
144 mm in maximum mediolateral width across the man-
dibular condyles. Among species of Daspletosaurus, only 
the quadrates of D. wilsoni have been adequately figured, 
limiting comparisons between specimens. The quadrates of 
CMC VP15826 do not appear to differ markedly from the 
holotype of D. wilsoni (Warshaw and Fowler 2022: fig. 9) 
but do differ from D. horneri in lacking fossae ventral to the 
anterior pneumatic recess, in lacking an undercut postero-
ventral margin of the medial fossa of the pterygoid flange, 
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and for having a pneumatic recess that does not reach the 
medial surface of the pterygoid flange (Carr et al. 2017).

The left and right quadrates of CMC VP15826 are asym-
metric with respect to one another in several ways. In the 
right quadrate the dorsal surface of the pterygoid flange is 
straight for most of the length of the flange, whereas in the 
left quadrate this margin is deflected sharply ventrally at the 
anterior third of its length similar to the condition in D. wil­
soni (BDM 107). A groove is reportedly present between 
the articular condyles of D. torosus, but not in D. horneri 
(Carr et al. 2017). In CMC VP15826 there is a groove on the 
right quadrate only, with the condyles being divided instead 
on the left quadrate by a broad concavity. The appearance 
of a groove on the right quadrate may be a result of post-
mortem distortion, however. The angle of the anteroventral 
margin of the pterygoid flange of the left quadrate appears 
to be essentially identical to that of D. wilsoni, though this 
angle is reportedly steeper in D. horneri than in D. torosus 
(Warshaw and Fowler 2022; Carr et al. 2017). In the present 
specimen, however, this margin is considerably less steep in 
the right quadrate. Such asymmetries in a single individual 
may indicate a high degree of plasticity in the morphology 
of this element.

Vomer: The fused vomers (Fig. 8) are nearly complete 
anterior to the point where both the left and right sides of the 
element come together, and approximately 446 mm long as 
preserved. Though twisted and crushed, it is largely consis-
tent with the morphology of other tyrannosaurids (Brochu 
2003; Currie 2003). The left and right sides together enclose 
an elongated groove on the posterior half of the dorsal sur-
face of the element. The anterior plate is broad relative to 
the mediolateral width of the stem, but not to the extraordi-
nary degree of lateral expansion present in Tyrannosaurus 

rex (Molnar 1991; Larson 2008). No foramina are present 
within the anterior plate as there are in some specimens of 
Tyrannosaurus rex (Larson 2008). As in Tyrannosaurus 
rex, there is a mediolaterally narrow, dorsoventrally flat 
process that continues anterior to the anterior plate and that 
forms the anterior limit of the element (Brochu 2003), al-
though it appears to be incomplete in the present specimen. 
A deep keel is present at the midline of the element’s ventral 
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surface, a synapomorphy of Daspletosaurus sp. (Carr et al. 
2017). A keel is also present on the ventral side of the vomer 
in Tyrannosaurus rex below the posterior end of the anterior 
plate, whereas in Daspletosaurus sp. this keel is positioned 
well posterior to the plate (Larson 2008).

Pterygoid: Both pterygoids are represented, but only the 
right element (Fig. 9) is nearly complete and relatively well 
preserved. The right pterygoid is approximately 440 mm 
long and is similar in essence to that of T. rex and other ty-
rannosaurids (Larson 2008). The element is mediolaterally 
thin for its entire length. Posteriorly it possesses a dorsally 
projecting quadrate process that overlaps the anterior part of 
the medial surface of the pterygoid flange of the quadrate. 
A prominent anterodorsally directed ramus of the ptery-
goid contacts the mediodorsal surface of the palatine, and 
together these elements enclose a rounded fenestra (Figs. 9 
and 10) that is roughly ~38 mm tall and ~30 mm long.

Ectopterygoid: The left ectopterygoid (Fig. 10A) is mostly 
complete, but much of its surface is badly crushed. The an-
terior or jugal ramus curls anteroventrally from the body 
of the element and bears a dorsoventrally broad, flattened 
surface for contacting the jugal. The ventral ramus curls 
posteroventrally from the body and has a single anteroposte-
riorly elongate (~40 mm) pneumatic excavation on its medial 

surface as in D. horneri, whereas two foramina are present 
here in the holotype of D. torosus (Carr et al. 2017). There is 
a ~10 mm wide accessory pneumatic foramen in the body of 
the ectopterygoid between the jugal and ventral processes.

Palatine: The main body of the right palatine (Fig. 10B) 
is largely intact, but most of the vomeropterygoid process as 
well as the distal ends of the jugal process, medial process, 
and maxillary ramus are missing. As preserved, the bone 
has an anteroposterior length along its ventral margin of 
approximately 245 mm; its maximum dorsoventral height is 
just over 183 mm. The posterior pneumatic recess is located 
behind the anterior margin of the vomeropterygoid neck, 
a synapomorphy of the genus Daspletosaurus (Carr et al. 
2017). Posteromedially, there is a process for contacting 
the lateral surface of the anteroventral part of the pterygoid 
which, together with the posterior margin of the dorsal ra-
mus of the palatine, forms a fenestra between these elements 
(Figs. 9 and 10).

As the holotype of D. wilsoni does not include a palatine, 
CMC VP15826 is here compared only to D. horneri and 
D.  torosus. The palatine agrees closely with the holotype 
of D. torosus. Features shared with the holotype of D. to­
rosus but not D. horneri include closely spaced pneumatic 
recesses, an internal partition between the pneumatic re-

Fig. 10. Tyrannosaurine dinosaur Daspletosaurus sp. (CMC VP15826) from the Upper Cretaceous (Late Campanian) Coal Ridge Member of the Judith 
River Formation, Fergus County, Montana. A. Left ectopterygoid in ventral (A1), dorsal (A2), and medial (A3) views. B. Right palatine in lateral (B1) 
and medial (B2) views. Abbreviations: amfe, anterior margin of palatine-pterygoid fenestra; apr, accessory pneumatic recess; jr, jugal ramus; lf, lateral 
flange; mf, maxillary facet; mr, maxillary ramus; pf, pterygoid facet; pp, pterygoid process; ppr, posterior pneumatic recess; pr, pneumatic recess; vpn, 
vomeropterygoid neck; vr, ventral ramus. 
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cesses, a posterior pneumatic recess that is as tall as the 
maxillary ramus, and the presence of a medial pneumatic 
opening (Carr et al. 2017). The vomeropterygoid neck  of the 
palatine is oriented anterodorsally as in D. torosus (CMN 
8506) rather than nearly vertically as in the holotype of D. 
horneri (Carr et al. 2017). The posterior pneumatic recess is 
rounded posteriorly and narrows anterodorsally as in D. to­
rosus, whereas the recess in the paratype of D. horneri is not 
as tapered and has a more vertically oriented anterior margin 
(Carr et al. 2017: fig 2F).

Discussion
Review of specimens previously assigned to Daspletosau­
rus torosus and Daspletosaurus wilsoni.—Russell (1970) 
referred several tyrannosaurid specimens from Alberta to 
D. torosus, but a comprehensive review of these referrals has 
not been published. The holotype of D. torosus (CMN 8506) 
was collected from the Brachylophosaurus–Coronosaurus 
Assemblage Zone of the Oldman Formation in Dinosaur 
Provincial Park, Alberta, Canada (Eberth et al. 2023). Based 
on a review of the literature as it stood in 2017, Fowler (2017) 
placed Coronosaurus brinkmani at ~77.1 Ma, and Warshaw 
and Fowler (2022) placed D. torosus specifically at ~77 Ma. 
The upper age limit of this assemblage zone has been re-
cently placed at 76.80+ Ma (Eberth et al. 2023). Postcranial 
elements of CMN 350 have been discussed in the literature, 
but diagnostic cranial elements (postorbital and lacrimal) 
are associated with the specimen contra Russell (1970) and 
Paulina-Carabajal et al. (2021). CMN 350 bears a massive 
cornual process of the postorbital and a prominent, trian-
gular lacrimal cornual process, allowing for a confident re-
ferral to Daspletosaurus. CMN 11594 (includes the articu-
lated posterior 1/2 of a skull and dentaries) from the Oldman 
Formation of southern Alberta possesses established syn-
apomorphies of Daspletosaurus (massive cornual process of 
postorbital that approaches laterotemporal fenestra; tall, tri-
angular lacrimal cornual process; pronounced interlocking 
ridges at mandibular symphysis) supporting Russell’s (1970) 
original referral to that genus. AMNH 5346, a maxilla from 
Dinosaur Provincial Park, Alberta, was referred to D. toro­
sus by Russell (1970) and later Carr (1999) but has not been 
figured or redescribed. These specimens (CMN 350, CMN 
11594, AMNH 5346) warrant further anatomical description 
and, if possible, stratigraphic placement.

At least three albertosaurine specimens have been mis-
identified as Daspletosaurus. NHMUK PV R4863 (for-
merly BMNH R4863), an articulated tyrannosaurid rostrum 
(dentaries, left maxilla, premaxillae, nasals), was referred 
to D.  torosus by Russell (1970). NHMUK PV R4863 was 
regarded as a specimen of Gorgosaurus sp. at the time of 
its acquisition by the NHMUK from William E. Cutler in 
the 1920s. More recently, this specimen has been referred to 
Daspletosaurus sp. by Currie (2003). Study of this specimen 
by the senior author (EW-C), however, failed to identify the 

synapomorphies of Daspletosaurus. Specifically, the spec-
imen lacks a coarse subcutaneous surface of the maxilla 
(Carr et al. 2017), and also lacks a large maxillary fenestra. 
Furthermore, the maxillary fenestra is well separated from 
the anterior margin of the antorbital fossa as in albertosau-
rines. We do not, therefore, regard NHMUK PV R4863 as 
a specimen of Daspletosaurus. Its occurrence in the “Belly 
River Series” rather than the Edmonton Group (Horseshoe 
Canyon Formation) suggests that it likely pertains to the ge-
nus Gorgosaurus, as it is the only albertosaurine known from 
the Belly River Group (Dinosaur Park Formation). The refer-
ral of the partial skeleton CMN 11315 from the Horseshoe 
Canyon Formation of Alberta to cf. Daspletosaurus by 
Russell (1970) indicated that this genus continued into the 
Maastrichtian, but a recent study reassigned this specimen 
to Albertosaurus sarcophagus (Mallon et al. 2019), making 
specimens of the late Campanian D. horneri (~75.1–74.4 Ma) 
the youngest confirmed examples of Daspletosaurus (Carr 
et al. 2017). Currie (2003) referred an ontogenetically imma-
ture (“large juvenile-subadult”; Voris et al. 2019) skull (TMP 
1994.143.0001) to Daspletosaurus sp., and this diagnosis has 
been tentatively accepted (e.g., Hone and Tanke 2015; Carr et 
al. 2017). However, an isolated postorbital (TMP.2013.18.11) 
from a juvenile tyrannosaurid (<50% adult size) from the 
Dinosaur Park Formation more closely resembles the postor-
bital of adult Daspletosaurus than does the ontogenetically 
older TMP.1994.143.1 (Voris et al. 2019). This, in addition 
to phylogenetic data, lead Voris et al. (2019) to reassign 
TMP.1994.143.0001 to Gorgosaurus, though this has been 
questioned (Paulina-Carabajal et al. 2021).

The partial skull and skeleton of a tyrannosaurid (FMNH 
PR308) from the Centrosaurus apertus Zone (76.5–75.8 Ma, 
Eberth et al. 2023) of the Dinosaur Park Formation was as-
signed to Albertosaurus (= Gorgosaurus) libratus by Russell 
(1970), but was subsequently reassigned to Daspletosaurus 
torosus by Carr (1999). Despite being heavily reconstructed, 
FMNH PR308 can be referred to Daspletosaurus by, among 
other features, the presence of a massive cornual process of 
the postorbital that approaches the laterotemporal fenestra. 
Due to its stratigraphic overlap with D. wilsoni, Warshaw et al. 
(2024) inferred that this specimen may possibly be assignable 
to D. wilsoni. Currie (2003) referred the undescribed “skull 
and skeleton” TMP 92.36.1220 from Dinosaur Provincial 
Park and the undescribed TMP 98.48.1 to Daspletosaurus sp.

Pending further study, the only definitive specimen of 
Daspletosaurus torosus with reliable stratigraphic prove-
nance is the holotype (CMN 8506). Carr et al. (2017) stated 
that D. torosus is “restricted to the lower two-thirds of the 
Dinosaur Park Formation (~76.7–75.2 Ma).” However, Carr 
et al. (2017) did not indicate which specimens of D. torosus 
represent the upper limit of this stratigraphic range. CMN 
8506 was recovered from the Oldman Formation, not the 
overlying Dinosaur Park Formation (Paulina-Carabajal et al. 
2021). An isolated tyrannosaurid frontal collected by Charles 
Sternberg in 1921 within the present boundaries of Dinosaur 
Provincial Park was referred to D. torosus by Yun (2020), 



WARNER-COWGILL ET AL.—NEW SPECIMEN OF TYRANNOSAURINE DINOSAUR FROM MONTANA, USA	 171

but its stratigraphic position is unknown, and its diagnostic 
value has been questioned (Paulina-Carabajal et al. 2021). 
Voris et al. (2019) regard all documented Daspletosaurus 
specimens from the Oldman and Dinosaur Park formations 
(including the complete skull TMP 2001.36.1 and the partial 
skull TMP 1985.62) as provisional specimens of D. toro­
sus. However, some of these specimens, including TMP 
2001.36.1, and others from the Dinosaur Park Formation 
and equivalent beds in the Oldman Formation have yet to be 
thoroughly described, and have been hypothesized to rep-
resent a new, undescribed species (Paulina-Carabajal et al. 
2021; Scherer and Voiculescu-Holvad 2024). Most recently, 
Warshaw et al. (2024) referred TMP 2001.36.1 to D. wilsoni, 
but further descriptions of TMP 2001.36.1 and TMP 1985.62 
are ongoing by other workers (Paulina-Carabajal et al. 2021; 
Colton Coppock, personal communication 2023).

Several specimens have recently been assigned to D. wil­
soni by Warshaw et al. (2024) based on the presence of a  dorsal 
quadrate process of the quadratojugal that is broadly exposed 
in lateral view, a narrow orbit, and an inflated “rostrodorsal 
ala” of the lacrimal. Among these are at least three specimens 
from a single, multi-taxon bonebed in the Two Medicine 
Formation of Montana (Currie et al. 2005). Although the 
stratigraphic position and numeric age of this material is not 
well resolved, these specimens can confidently be assigned 
to Daspletosaurus by the presence of a massive postorbital 
cornual process that approaches the laterotemporal fenestra 
among other features. These specimens were hypothesized to 
belong to the same species as MOR 590 prior to the descrip-
tion of D. horneri (Currie et al. 2005). This collection shares 
several features with both D. torosus and D. wilsoni to the ex-
clusion of D. horneri, including the presence of a long, anteri-
orly tapered and dorsally offset maxillary fenestra as well as a 
tall cornual process of the lacrimal. Further study of the mor-
phology and stratigraphic position of this collection is clearly 
warranted. TMP 2003.10.3, a largely complete skull of an 
ontogenetically mature specimen of Daspletosaurus from the 
Upper Oldman Formation of the Milk River region of south-
ern Alberta, was recently assigned to D. wilsoni (Warshaw et 
al. 2024). This specimen reportedly occurs in beds correla-
tive to the Corythosaurus–Centrosaurus Assemblage of the 
lower Dinosaur Park Formation and has thus been estimated 
to be ~76.5–75.6 Ma by Warshaw et al. (2024).

Taxonomic identity of CMC VP15826.—CMC VP15826 
has a combination of features that has not been previously 
reported in Daspletosaurus. Although it lacks most diag-
nostic characters of D. horneri, CMC VP15826 shares some 
features with that species (distal end of dorsal jugal facet 
of quadratojugal not visible laterally, one foramen in the 
ventral ramus of the ectopterygoid, short cervical epipoph-
yses; Carr et al. 2017) that are not present in the holotype 
of D. torosus. This unique suite of features could be inter-
preted as evidence that CMC VP15826 represents a new 
species with a transitional morphology between the chrono-
logically older D. torosus (or D. wilsoni) and the younger 

D. horneri. Alternatively, such features may be intraspecif-
ically variable within these taxa and therefore of no taxo-
nomic significance, as the limited sample size of previously 
described specimens of D. torosus and D. wilsoni cannot be 
considered representative of the potential range of morpho-
logical disparity within these taxa.

One of the three characters purported to distinguish 
D. wilsoni from D. torosus is the presence of a dorsal quad-
rate “contact” of the quadratojugal that is broadly visible in 
lateral view (Warshaw et al. 2024). Because the dorsal quad-
rate contact is a surface that is necessarily only visible in 
medial view, we will hereon refer to it as the “dorsal quadrate 
process” instead of the “dorsal quadrate contact”. Based on a 
photograph of the specimen (Maltese 2009: fig. 3), Warshaw 
et al. (2024) argue that the dorsal quadrate process of the 
quadratojugal in CMC VP15826 is broadly visible in lateral 
view as in D. wilsoni because there is a “cleft” between the 
dorsal quadrate process and the body of the quadratojugal that 
“separates the two structures”. During the process of prepa-
ration and restoration, this “cleft” was interpreted as a break 
and was therefore filled in with white putty (Fig. 7A, B). It is 
unclear to us if this notch is homologous to the cleft present 
in the quadratojugal of BDM 107, or if it represents a break, 
as this part of the bone is extremely thin and fragile. The 
dorsal margin of the quadratojugal often forms an irregular 
margin in tyrannosaurids, and such a cleft may be present 
in taxa that do not have a laterally exposed dorsal quadrate 
process. In a specimen of Tyrannosaurus rex (“Stan”, now 
formerly BHI 3033 in the collection of the natural history 
museum currently under construction in Abu Dhabi, UAE) 
for example, a taxon coded as having a medially directed 
dorsal quadrate process (Warshaw and Fowler 2022; Scherer 
and Voiculescu-Holvad 2024; Warshaw et al. 2024), there is a 
similar cleft on the left quadratojugal, but no such cleft on the 
right quadratojugal (Larson 2008). Such a cleft, therefore, 
may be present in specimens that do not have a laterally ex-
posed dorsal quadrate process. Contra Warshaw et al. (2024), 
the dorsal quadrate process in CMC VP15826 is oriented 
sharply medially, giving the dorsal ramus of the quadratoju-
gal an anteroposteriorly narrow lateral profile as in D. toro­
sus (CMN 8506) and a specimen of D. horneri (MOR 1130) 
as opposed to the broad profile of D. wilsoni (BDM 107) and 
the holotype of D. horneri (MOR 590). Warshaw et al. (2024) 
observe that the dorsal quadrate process of the quadratojugal 
in FMNH PR308 is not broadly visible laterally. Two speci-
mens (CMC VP15826 and FMNH PR308) that occur within 
the proposed temporal range of D. wilsoni therefore lack one 
of the purportedly diagnostic characters of that species. The 
presence of this character state in specimens of this age indi-
cates either that this character is intraspecifically variable in 
Daspletosaurus or that there were two sympatric species of 
Daspletosaurus in the late Campanian. We favor the former 
explanation over the latter due to the small sample size at 
hand and because two congeneric tyrannosaurd species have 
never been shown to conclusively overlap temporospatially. 
If CMC VP15826 and FMNH PR308 are interpreted as being 
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taxonomically distinct from D. wilsoni, however, then the 
sympatry of these taxa would support cladogenesis within 
Daspletosaurus. Tyrannosaurus rex has been described as 
having a medially directed dorsal quadrate process of the 
quadratojugal (Warshaw and Fowler 2022). It does appear 
that in some specimens of T. rex (AMNH 5027, MOR 008, 
MOR 555, FMNH PR2081, LACM 23844, UWBM) the dor-
sal quadrate process is directed more medially than it is 
in D. wilsoni (BDM 107) and the holotype of D. horneri 
(MOR 590). However, in a large adult specimen of T. rex 
(RSM P2523.8; Persons et al. 2020: fig. 15), this process 
appears to be laterally exposed and entirely visible in lateral 
view as in BDM 107 and MOR 590, thus indicating that this 
feature may be intraspecifically variable in T. rex. Given 
its potential for variability within Tyrannosaurus, a genus 
represented by many more specimens than Daspletosaurus, 
we are skeptical of the taxonomic significance of this feature 
for diagnosing species of Daspletosaurus. This character is 
known to be variable in D.  horneri, and because the only 
definitive specimen of D.  torosus is the holotype (CMN 
8506), its potential variability cannot be assessed in that 
taxon. If this character is variable within either D. torosus or 
D. wilsoni, CMC VP15826 cannot at present be confidently 
assigned to or excluded from either D. wilsoni or D. toro­
sus. We interpret the apparent variability of this character 
in Daspletosaurus specimens from the proposed temporal 
range of D. wilsoni (~76.5–75.8  Ma) as intraspecific mor-
phological disparity rather than contemporary taxonomic 
diversity, thereby reducing the number of features that may 
distinguish D. wilsoni from D. torosus to two (narrow orbit 
and “inflated rostrodorsal ala” of lacrimal). Study of addi-
tional Daspletosaurus specimens with stratigraphic controls 
are necessary to determine if these remaining two characters 
are sufficiently robust to support the validity of D. wilsoni as 
distinct from D. torosus. However, cladogenesis remains a 
viable model due to the rarity of stratigraphically well-con-
strained specimens.

Conclusions
CMC VP15826 is a large, ontogenetically mature specimen 
of Daspletosaurus from the upper Campanian Coal Ridge 
Member of the Judith River Formation of Central Montana. 
This specimen is necessarily less than ~76.3 Ma, but po-
tentially as young as ~75.8 Ma, with a maximum model 
age of 76.12 +0.14/-0.47 Ma and a minimum model age of 
75.81 +0.33/-0.37 Ma. CMC VP15826 can be excluded from 
D. horneri, as it is chronologically older (by ~0.6–1.1 Myr) 
than and lacks most diagnostic features of that taxon. CMC 
VP15826 shares numerous features with both D. wilsoni and 
D. torosus, but lacks one of only three characters proposed 
by Warshaw et al. (2024) to distinguish D. wilsoni from 
D.  torosus (laterally exposed dorsal quadrate process of 
quadratojugal). Although the morphological disparity be-
tween the new specimen and the stratigraphically equivalent 

D. wilsoni could be interpreted as evidence of contemporary 
taxonomic diversity within Daspletosaurus, we contend 
that this feature is intraspecifically variable and therefore 
taxonomically uninformative, thereby weakening the case 
that D. wilsoni is distinct from D. torosus. The presence of 
the other two characters purported to distinguish D. wilsoni 
from D. torosus (narrow orbit, inflated “rostrodorsal ala” of 
lacrimal) cannot be evaluated in CMC VP15826, because the 
lacrimal and postorbital are not preserved. CMC VP15826 
cannot at present be confidently assigned to or excluded 
from either D. torosus or D. wilsoni. At ~75.1–74.4 Ma, 
D. horneri remains the stratigraphically youngest species of 
Daspletosaurus, and may therefore have arisen from either 
D. torosus or D. wilsoni through anagenesis as proposed by 
Carr et al. (2017). Future work should be focused on deci-
phering the interspecific and intraspecific morphological 
variation in Daspletosaurus and determining the specific 
identities and stratigraphic ranges of available specimens.
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