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Teeth from the Middle Jurassic of Morocco reveal  
the oldest turiasaurian sauropods from Africa
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Wills, S., Meade, L., Smith, M., and Maidment, S.C.R. 2025. Teeth from the Middle Jurassic of Morocco reveal the 
oldest turiasaurian sauropods from Africa. Acta Palaeontologica Polonica 70 (3): 411–420. 

Readily identifiable based on their large, “spatulate” teeth with diagnostic “heart”-shaped crowns, turiasaurians are 
non-neosauropodan eusauropods known from varied Jurassic and Cretaceous formations across Laurasia and Gondwana. 
Recently, three teeth with turiasaurian features were collected from the Middle Jurassic El Mers III Formation in the 
Middle Atlas Mountains of north-central Morocco. Although these teeth are superficially similar to those of the Late 
Jurassic Turiasaurus riodevensis from Spain, the absence of rounded denticles presence of a prominently peaked apex 
and a mesially flared margin, differ from other known turiasaurians. Turiasaurians have not previously been described 
from the El Mers III Formation, and the only named sauropod from the El Mers Group, which lacks preserved teeth, is 
the dubious taxon “Cetiosaurus mogrebiensis”. Due to lack of overlapping material and its lack of clear diagnostic char-
acters, we refrain from referring these teeth to the latter, and identify them as Turiasauria indeterminate instead. These 
teeth represent the first definitive turiasaurian remains from Morocco, as well as the geologically oldest occurrence of 
Turiasauria from mainland Africa.
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Introduction
Turiasauria is a clade of large-bodied non-neosauropod 
eusauropods ranging from the Early or Middle Jurassic to 
the Early Cretaceous (Royo-Torres et al. 2006; Mocho et al. 
2016; Mannion 2019; Royo-Torres et al. 2021). First identified 
from the Iberian Peninsula (Royo-Torres et al. 2006) and 
originally restricted to former Laurasian continents (Britt et 
al. 2017; Royo-Torres et al. 2017), Turiasauria is now known 
from various locations in Africa (Mocho et al. 2016; Mannion 
et al. 2019; Royo-Torres et al. 2021), India (Sharma et al. 
2022) and perhaps Argentina (Royo-Torres et al. 2021; Milàn 
and Mateus 2024). Recent identification of an Early Jurassic 
putative turiasaurian tooth from Denmark (Milàn and Mateus 
2024) indicates that the group may have originated by that 
time, achieving a wider distribution by the Middle Jurassic 
(Royo-Torres et al. 2021; Scharma et al. 2022).

Until now, the African record of Turiasauria has con-
sisted of two named taxa from the Middle Jurassic Isalo 
III Formation of Madagascar (Narindasaurus, Royo-Torres 
et al. 2021) and the Upper Jurassic Tendaguru Formation 
of Tanzania (Tendaguria, Mannion et al. 2019), although 
isolated teeth from the Middle Jurassic of Niger and 
Mada gascar and the Early Cretaceous of Libya have also 
been referred to the clade (Mocho et al. 2016). Xing et al. 
(2015) suggested that the Middle Jurassic Moroccan sau-
ropod Atlasaurus formed a clade with the turiasaurians 
Losillasaurus and Turiasaurus, but this result has not been 
replicated, and Atlasaurus is more commonly thought to be 
a brachiosaurid (e.g., Mannion et al. 2019; Royo-Torres et al. 
2021). Here, we report three associated sauropod teeth from 
the Middle Jurassic El Mers III Formation of the Middle 
Atlas Mountains, Morocco, which represent the earliest de-
finitive record of turiasaurians in Africa.

The Bathonian El Mers III Formation, which crops out 
in exposures around the town of Boulemane in the Middle 
Atlas Mountains, is becoming increasingly important for 
understanding the radiation of dinosaurs during the Middle 
Jurassic. Dinosaur remains from the formation include the 
world’s oldest ankylosaur, and the first from Africa, Spico­
mellus afer (Maidment et al. 2021), the early stegosaurs 
Adratiklit boulahfa (Maidment et al. 2020) and Thyreosaurus 
atlasicus (Zafaty et al. 2024), and the world’s oldest cerapo-
dan ornithischian (Maidment et al. 2025). The formation 
therefore hosts some of the earliest representatives of several 
major ornithischian dinosaur clades, shedding light on dino-
saur diversifications and radiations in the aftermath of the 
global environmental perturbations that marked the end of 
the Early Jurassic (Cabreira et al. 2016; Reolid et al. 2022; 
Maidment et al. 2025).
Institutional abbreviations.—FHPR, Utah Field House of 
Natural History State Park Museum, Vernal, Utah, USA; 
MAP, Museo Aragonés de Paleontología, Teruel, Spain; ML, 
Museu da Lourinhã, Lourinhã, Portugal; MNHN, Muséum 
national d’Histoire naturelle, Paris, France; NHMD, Natural 

History Museum of Denmark, Copenhagen, Denmark; RAJ, 
Geological Survey of India,  Kolkata, India; UMNH Natu-
ral History Museum of Utah, Salt Lake City, Utah, USA; 
USMBA, Université Sidi Moha med Ben Abdellah, Fez, 
Morocco.

Material and methods
The specimens described herein are three teeth (USMBA 
002–004) that were surface collected from the Bathonian El 
Mers III Formation at the Boulahfa Plain, near Boulemane 
in the Middle Atlas Mountains, Morocco (see Maidment 
et al. 2020 for locality data). On the Boulahfa Plain, the El 
Mers III Formation is exposed in erosive badlands formed 
by frequent flash flood events. This flash flooding trans-
ports large amounts of sediment, and in situ bones are 
frequently exposed and re-buried by these bulk transport 
events. The teeth were surface-collected by a local farmer 
in close proximity to large limb and other elements that 
were subsequently re-buried under at least 5 m of sediment 
during a flash-flooding event before excavation was pos-
sible. The El Mers III Formation at the Boulahfa Plain is 
composed of variegated mudstones and sparse, laterally dis-
continuous sandstones, and is predominantly greenish in its 
lower parts and purple-reddish in its upper parts (Maidment 
et al. 2020). The zone from which most of the fossils appear 
to be derived is close to the top of the greenish section and 
is around 20 m thick (Maidment et al. 2020: fig. 3). The site 
where the teeth were collected, which we refer to as the “Big 
Flood Quarry”, is located approximately 15 m below the 
colour-change from predominantly green to predominantly 
purple-red mudstones.

Teeth were photographed and measured using standard 
documentation techniques. Tooth anatomical terminology 
follows that of Smith and Dodson (2003) and Hendrickx et 
al. (2015).

Results
Description.—According to Royo-Torres et al. (2021), iso-
lated turiasaur teeth can be assigned approximate locations 
in the skull based on the orientation of the crowns. In pre-
maxillary and maxillary teeth, in mesial or distal orientation, 
the crown is curved lingually. In dentary teeth, the crown is 
angled “labially” (Royo-Torres et al. 2021), although it would 
be more accurate to describe them as straight, or apically 
oriented, as the crown apex is not labially inclined. Applying 
these criteria, USMBA 002 and 004 are from the premax-
illa or maxilla, and from the distal orientation of the crown 
apices, likely from the right side. Because of the large wear 
facets, tooth USMBA 003 is more challenging to place. In 
mesial and distal orientation, the undulating crown does not 
appear to curve strongly lingually, suggesting that this may 
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Fig. 1. The three turiasaurian sauropod teeth from Boulahfa Plain, Morocco, Middle Jurassic. A. USMBA 002. B. USMBA 003. C. USMBA 004. Teeth 
in lingual (A1–C1), mesial (A2–C2), labial (A3–C3), distal (A4–C4), apical (A5–C5), and basal (A6–C6) views.
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be a dentary tooth, from the right side also. Measurements of 
the teeth are provided in Table 1.

All three teeth include a substantial portion of the root and 
two of the crowns are well-preserved (Fig. 1). The crowns of 
USMBA 002 and 003 are truncated by wear facets, heavily 
in the case of USMBA 003, but USMBA 004 is unworn. The 
crown surfaces have been polished by wind and/or water 
action, but the enamel texture is still clearly visible on tooth 
USMBA 004 and is partially visible in patches on USMBA 
002 and 003. USMBA 002 and 003 are consistent in mor-
phology and are described together for convenience, whereas 
USMBA 004 differs in shape and is described separately. 
Based on their relative sizes and different degrees of crown 
expansion, it seems likely that teeth USMBA 002 and 003 
are from the distal ends of the tooth row, whereas tooth 
USMBA 004 was likely more anteriorly or centrally located.

In labial view, the tooth crowns of USMBA 002 and 003 
exhibit slight mesiodistal expansion with respect to the root. 
Maximum mesiodistal expansion occurs at a point only a few 
millimetres apical to the root / crown boundary and is devel-
oped to similar degrees either side of the crown long axis. 
Apical to the maximum diameter, the crown tapers to a bluntly 
rounded terminus. The mesial crown margin is smoothly and 
gently convex apicobasally, whereas the distal margin is sinu-
ous, being slightly convex basally, but more strongly concave 
apically. As a result, the crowns are asymmetrical in labial 
view, and the tooth apex is recurved distally. Overall, these 
features give the crowns a narrow, heart-shaped outline. The 
labial surface is strongly convex mesiodistally with a slight 

break-in-slope near to the distal margin due to the presence of 
an incipient distal groove. Most of the surface is smooth, but 
small unpolished patches wear “wrinkled” enamel showing 
evidence of connected, anastomosing ridges.

In lingual view, the crowns are gently concave mesiodis-
tally and this, in combination with the labial convexity, 
gives them a strongly D-shaped transverse cross-section. 
The central part of the lingual convexity is occupied by a 
low eminence, in a position equivalent to the lingual ridge 
of many other sauropods. This feature extends apically to-
ward the crown tip and divides the lingual surface into two 
subequal parts.

In mesial or distal view, the labial crown surfaces are 
strongly convex apicobasally, whereas the lingual surfaces 
are strongly concave. The crown apex is lingually inclined.

As preserved, the crown margins of USMBA 002 and 
003 lack denticles. The tip of USMBA 002 is truncated by a 
narrow, high-angled, elliptical wear facet that is apicobasally 
longer than transversely wide (width is c. 1/2 the length) and 
extends along the mesial crown margin for a short distance. 
A very narrow, apicobasally elongate (width is c. 1/3 the 
length) wear facet is present on the distal margin but does not 
extend apically to merge with the mesial facet. USMBA 003 
is more heavily worn, with large, high-angled, apicobasally 
ovoid wear facets that have truncated the entire mesial and 
distal margins and that are confluent around the crown apex. 
However, although extensive, the wear has not led to the de-
velopment of the distinctive “shoulders” seen in some other 
worn sauropod teeth (e.g., Camarasaurus spp.; Upchurch 
and Barrett 2000). In both cases, the wear facets reveal that 
the enamel is thin and symmetrically distributed around the 
tooth crown.

USMBA 004 is similar to the other teeth in many respects, 
but its crown is much more strongly expanded mesiodistally 
with respect to the root, in labial view, and the curvature of its 
mesial and distal margins is correspondingly greater, giving 
it a much more obviously heart-shaped outline. The expan-
sion is more strongly asymmetrical in this tooth, with most 
occurring mesial to the crown long-axis. The labial surface is 
strongly convex mesiodistally, due to the presence of a prom-
inent, centrally positioned, apicobasally extending swell-
ing, which is defined both mesially and distally by incipient 
grooves. In lingual view, an incipient lingual ridge is present, 
but is limited to the apical-most part of the tooth. Wear facets 

Fig. 2. Comparisons to other known or suspected turiasaurs. A. Premaxillary and maxillary (top row MAP-6013–6018), and dentary (bottom row 
MAP-6032–6038) teeth of Losillasaurus giganteus Casanovas et al., 2001, from the Late Jurassic of Spain (from Royo-Torres et al. 2021). B. Teeth of 
Turiasaurus riodevensis Royo Torres et al., 2006, from the Late Jurassic of Spain (from Royo-Torres and Upchurch, 2012). C. Isolated Turiasauria-like 
teeth from the Upper Jurassic (Upper Kimmeridgian-basal Tithonian) of Portugal (from Mocho et al. 2016). D. Premaxillary, maxillary, and dentary 
teeth of Moabosaurus utahensis Britt et al., 2017, from the Early Cretaceous of the United States (from Britt et al. 2017). E. Premaxillary and maxillary 
teeth (MNHN MAJ 423) of Narindasaurus thevenini Royo-Torres et al., 2021, from the  Middle Jurassic of Madagascar (from Royo-Torres et al. 2021). 
F. Turiasaurian tooth (NHMD 1185136) from the Lower Jurassic (Pliensbachian) of Denmark (from Milàn and Mateus 2024). G. Premaxillary-maxillary 
tooth (UMNH.VP.26004) of Mierasaurus bobyoungi Royo-Torres et al., 2017, from the Early Cretaceous of USA (from Royo-Torres et al. 2017). 
H. Turiasaurian tooth (RAJ/JAIS/CVQS001) from the Middle Jurassic (Bathonian) of India (from Sharma et al. 2022). I. Tooth (ML 368) of Zby atlanticus 
Mateus et al., 2014,  from the Late Jurassic of Portugal (from Mateus et al. 2014). J. Tooth of the possible turiasaur Oplosaurus armatus Gervais, 1852, 
from the Early Cretaceous of England (from Mocho et al. 2016). K. Drawing of a turiasaur-like tooth from Jobaria tiguidensis Sereno et al., 1999, from the 
Middle Jurassic of Niger (from Sereno et al. 1994). L. Turiasauria-like tooth (FHPR 18687.2) associated with postcranial remains of Haplocanthosaurus 
sp. from the Late Jurassic of USA. Photo by J. Foster. Tooth orientations: 1, lingual; 2, labial; 3, mesial; 4, apical; 5, distal; 6, basal. Not to scale.

→

Table 1. Measurements (in mm) of the three Boulahfa Plain sauropod 
teeth. Teeth labelled 1–3 for convenience. * including root; ** heavily 
worn; e estimate due to breakage. a, b, and c denote the formulae for the 
Slenderness and Compression Index; i.e., for Slenderness Index, max 
crown apicobasal height is divided by the max crown mesiodistal width.

USMBA 
002

USMBA 
003

USMBA 
004

Total tooth length* 64.7 53.0 71.3
Max crown apicobasal height (a) 31.3 23.4** 46.6
Max crown mesiodistal width (b) 18.5 15.6** 28.6
Basal crown mesiodistal width 15.8 13.3 16.9
Max crown labiolingual width (c) 12.6 9.4 13.0
Slenderness Index (a/b) 1.69 1.56e 1.63
Compression Index (c/b) 0.68 0.60e 0.45



WOODRUFF ET AL.—TEETH OF MIDDLE JURASSIC TURIASAURIAN SAUROPODS FROM MOROCCO 415

A

B

C

D

E F

G H

I KJ L



416 ACTA PALAEONTOLOGICA POLONICA 70 (3), 2025

and denticles are both absent. The crown surface is better 
preserved than in USMBA 002 and 003 and an anastomosing 
pattern of enamel wrinkles covers most of the crown surface.

The slenderness index (SI) of the crowns, the ratio of 
apicobasal length to mesiodistal width (Upchurch 1998), 
ranges from 1.56 (USMBA 003, although this is likely an 
underestimate due to heavy wear), through 1.63 (USMBA 
004) to a maximum of 1.69 (USMBA 002). A second ratio, 
the compression index (CI), defined as crown maximum la-
biolingual width divided by crown mesiodistal width (Díez 
Días et al. 2013), varies from 0.45 (USMBA 004), through 
~0.6 (USMBA 003) to 0.68 (USMBA 002).

In all three teeth, the root has a sub-circular, cylindrical 
cross-section and is broken basally to expose the pulp cavity.
Comparisons.—The three teeth from the Boulahfa Plain, 
especially USMBA 002 and 004, are strikingly similar to 
previously documented turiasaurian teeth. The elongate, ta-
pered crown apex present in USMBA 004, is likewise seen 
in Losilla saurus giganteus (Royo-Torres et al. 2021), Turia­
saurus riodevensis (Royo-Torres and Upchurch 2012), iso-
lated upper Kimmeridgian to basal Tithonian teeth from 
Portugal (Mocho et al. 2016), and an isolated Pliensbachian 
tooth from Denmark (Milàn and Mateus 2024). The mesio-
distal widths of the crowns, especially the degree of meso-
distal expansion of USMBA 002 and the mesiodistal expan-
sion along USMBA 004 is similarly seen in L. giganteus 
(from Royo-Torres et al. 2006), T. riodevensis (from Royo-
Torres and Upchurch 2012), isolated teeth from the upper 
Kimmeridgian to basal Tithonian of Portugal (Mocho et al. 
2016), an isolated Bathonian tooth from India (Sharma et al. 
2022), and the isolated Pliensbachian tooth from Denmark 
(Milàn and Mateus 2024).

In terms of their overall morphology, the Boulahfa Plain 
teeth are most similar to those from T. riodevensis. By con-
trast, many of the maxillary teeth in L. giganteus have a 
stronger degree of apex distal curvature, and its mesial and 
distal wear facets are almost shelf-like, with some facets 
having peaked apices themselves. These features are not ob-
served in the Boulahfa Plain teeth. Unlike in either L. gigan­
teus or T. rio devensis, there are no rounded denticles along 
the mesial apex boundary. As in T. riodevensis, the apex of 
the crown of USMBA 004 is relatively apicobasally straight 
with a low degree of apical curvature (Royo-Torres and 
Upchurch 2012). The labial groove on the mesial side has a 
c. 4 mm depressed region, and along with the convex mesial 
edge, the crown morphology of USMBA 004 is much more 
mesiodistally “flared” than known turiasaurian examples 
(i.e., T. riodevensis, L. giganteus; Fig. 2).

Discussion
Systematic position.—The Boulahfa Plain teeth possess a se-
ries of diagnostic features that permit referral to Eusauropoda, 
including: tooth crowns with D-shaped cross-sections; a 

lingual concavity bearing an incipient lingual ridge; and 
high-angled mesial and distal wear facets (Upchurch 1998; 
Wilson and Sereno 1998; Wilson 2002; Upchurch et al. 2004). 
The presence of incipient mesial and distal labial grooves, 
as well as extensive areas of anastomosing enamel wrin-
kles, are also consistent with eusauropod affinities (Upchurch 
1998; Wilson and Sereno 1998; Wilson 2002; Upchurch et 
al. 2004) although these features first appear in the early di-
verging non-eusauropod Pulanesaura eocollum (McPhee and 
Choiniere 2018), which is close to sauropod origins.

Among eusauropods, heart-shaped crowns in labial/lin-
gual view are characteristic of Turiasauria, enabling referral 
of the Boulahfa Plain teeth to this clade (Royo-Torres et al. 
2006; Mocho et al. 2016). A second possible turiasaurian 
synapomorphy, the presence of elongate apicobasal grooves 
along the root (Royo-Torres et al. 2021), is not present in any 
of the teeth from the Boulahfa Plain, although the root of 
USMBA 004 possesses ambiguous traces of what might be 
grooves. However, it is possible that this feature diagnoses 
a subset of later-occurring turiasaurians and was absent in 
earlier diverging taxa.

Several other features of the Boulahfa Plain teeth have 
systematic significance. Their low SI values (1.56–1.69) 
exclude them from Titanosauria and Diplodocoidea (which 
have SI >4.0; e.g., Upchurch 1998; Upchurch et al. 2004). The 
CI values (0.45–0.68) for the Boulahfa Plain teeth are lower 
than those reported for titanosaurians (~0.7–1.1; Díez Díaz 
et al. 2013; Holwerda et al. 2018). The absence of denticles 
(in USMBA 004) is consistent with referral to Eusauropoda 
(e.g., Upchurch 1998) but does not help to classify the teeth 
more precisely, as denticles are retained in multiple non- 
diplodocoid and non-titanosaurian lineages, such as mamen-
chisaurids and early diverging macronarians (e.g., Wilson 
and Sereno 1998; Upchurch et al. 2004), suggesting substan-
tial homoplasy in denticle loss.

The Moroccan sauropod record.—Named sauropod dino-
saurs from Morocco consist of the Early Jurassic vulcano-
dontid Tazoudasaurus naimi (Allain et al. 2004), the Middle 
Jurassic taxa Atlasaurus imelakei (Monbaron et al. 1999; Xing 
et al. 2015; Royo-Torres et al. 2021) and “Cetiosaurus mogre­
biensis” (de Lapparent 1955), and the early Late Cretaceous 
rebbachisaurid Rebbachisaurus garasbae (Lavocat 1954; 
Wilson and Allain 2015). However, indeterminate Early to 
Middle Jurassic and Late Cretaceous teeth (Holwerda et al. 
2018), postcranial material (Pereda-Suberbiola et al. 2004; 
Mannion and Barrett 2013; Ibrahim et al. 2016; Nicholl et 
al. 2018; Holwerda 2020) and trackways (Termier 1942; 
Dutuit and Ouazzou 1980; Jenny et al. 1981; Hadri et al. 
2007; Belvedere 2008; Marty et al. 2010; Enniouar et al. 2014; 
Lallensack et al. 2018; Oukassou et al. 2019; Boutakiout et al. 
2020; Oussou et al. 2023) are also documented.

Although the teeth from the Boulahfa Plain are referrable 
to Turiasauria, it is useful to compare them to the teeth asso-
ciated with other named Moroccan taxa. They can be distin-
guished from those of Tazoudasaurus naimi, as the latter has 
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almost symmetrical tooth crowns in labial view, which lack 
the heart-shaped outline of turiasaurians (Allain and Aquesbi 
2008). Moreover, the teeth of T. naimi bear marginal denticles 
(Allain and Aquesbi 2008). The holotype of Rebbachisaurus 
garasbae does not include teeth (Lavocat 1954; Wilson and 
Allain 2015) but isolated teeth from the early Late Cretaceous 
of Morocco have been referred to Rebbachisauridae (e.g., 
Holwerda et al. 2018). These referred teeth are elongate, 
peg-like and cylindrical, differing substantially from those 
of turiasaurians. Of perhaps more relevance, the Middle 
Jurassic taxon Atlasaurus imelakei has been recovered as a 
turiasaurian in some recent analyses (Xing et al. 2015) and 
its holotype includes teeth (Monbaron et al. 1999: fig. 1f, g). 
In A. imelakei the crowns are mesiodistally narrow, lack a 
heart-shaped outline and some possess denticles, suggesting 
that the teeth from the Boulahfa Plain are a distinct taxon, 
although they are near contemporaries. Moreover, A. imelakei 
is usually recovered as an early diverging macronarian in 
most analyses (e.g., Monbaron et al. 1999; Royo-Torres et al. 
2021) so it is not closely related to turiasaurians.

“Cetiosaurus mogrebiensis”, is a problematic taxon of 
uncertain phylogenetic affinity that is currently considered 
to be a nomen dubium (Upchurch et al. 2004). Named by 
Albert-Félix de Lapparent in 1955, this species was de-
scribed from three partial skeletons collected from different 
localities within a c. 3 km radius of the town of El Mers, 
which is about 20 km northeast of Boulemane. No teeth 
are known for “Cetiosaurus mogrebiensis”, so it is not pos-
sible to compare the specimens described herein directly. 
Although de Lapparent (1955) noted similarities between 

“C. mogrebiensis” and the “cetiosaurids” Bothriospondylus 
spp. and C. oxoniensis, and Läng and Mahammed (2010) 
recovered it within a polytomy of “cetiosaurid” eusauro-
pods, Upchurch and Martin (2003) noted that comparisons 
to “cetiosaurids” were untenable due to the absence of phy-
logenetically informative characters in the material of “C. 
mogrebiensis” and several notable anatomical differences 
between the latter and C. oxoniensis. As a result, they noted 
that the Moroccan and UK species were unlikely to be con-
generic (Upchurch and Martin 2003; Upchurch et al. 2004). 
Redescription of the “C. mogrebiensis” material is needed 
to determine its systematic position and to test its taxonomic 
validity. If “C. mogrebiensis” is found to be a turiasaur, the 
Boulahfa Plain teeth could conceivably be referred to it (de-
spite lack of overlapping material), but in the absence of any 
such evidence, we refrain from making any referrals herein.

The oldest turiasaur from Africa.—Occurrences of Turia-
sauria in both Gondwana and Laurasia indicate that the clade 
achieved a wide distribution by Bathonian times, as shown 
by their presence in the Middle Jurassic of India (Sharma et 
al. 2022), Madagascar (Royo-Torres et al. 2021), Morocco 
(this paper) and the UK (Barrett 2006, 2021; Royo-Torres 
et al. 2021; Fig. 3). Turiasaurian taxa are better known from 
the Upper Jurassic, with representatives from Portugal (Zby), 
Spain (Losillasaurus, Turiasaurus), Switzerland (Amanzia), 
and Tanzania (Tendaguria), and the clade persists into the 
Lower Cretaceous (Moabsaurus, Mierasaurus), at least in 
North America and Europe (e.g., Britt et al. 2017; Royo-Torres 
et al. 2017; Mannion 2019; Fig. 3). If a tooth from the Hasle 

Fig. 3. Temporal and geographic distribution of Turiasauria. Modified after Milàn and Mateus (2024). Debated or questionable taxa with turiasaur-like 
teeth denoted with *. 
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Formation of Denmark is not allochthonous, then the record 
of Turiasauria begins in the Early Jurassic (Pliensbachian), 
c. 17 million years earlier than thought previously (Milàn 
and Mateus 2024). Additionally, both Royo-Torres et al. 
(2021) and Milàn and Mateus (2024) suggested that the teeth 
of Bagualia alba from the Toarcian of Argentina (Pol et al. 
2020: fig. 2f) were similar to those from turiasaurians, which 
would suggest a global radiation of the clade by the mid- to 
late Early Jurassic. However, Bagulia has not been recov-
ered as a turiasaurian in any phylogenetic analysis and it is 
usually regarded as an early diverging eusauropod (Pol et al. 
2020; Gomez et al. 2021, 2024). Moreover, most of the teeth 
referred to this taxon (e.g., Pol et al. 2020: fig. 2g) are much 
more similar in shape to those of other early sauropods, such 
as Tazoudasaurus and Pulanesaura, with relatively narrow, 
denticulate crowns. Although one figured tooth of Bagualia 
is superficially heart-shaped, this morphology might be due 
to differential wear of the crown margins (such as variable 
wear within the tooth row; Holwerda et al. 2015; Wiersma 
and Sander 2017; Régent et al. 2024) rather than representing 
its original shape.

Isolated teeth from the Middle Jurassic of Niger (de 
Lapparent 1960) and Madagascar (Läng 2008), as well as the 
Lower Cretaceous of Libya (Le Loeuff et al. 2010), have been 
referred to Turiasauria (Mocho et al. 2016). However, in the 
case of the tooth from Niger, the apical part of the crown lacks 
the distinctive strongly convex distal margin that gives turia-
saurians their distinctive heart-shaped morphology (Mocho 
et al. 2016: fig. 10f), while the teeth from Madagascar (Mocho 
et al. 2016: fig. 10g) and Libya (Le Loeuff et al. 2010: fig. 5) 
are too incomplete to determine if they were originally heart-
shaped or not; although the Libyan teeth possess the synapo-
morphic apicobasal grooves (Royo-Torres 2021). As a conse-
quence, all these referrals should be regarded with caution, 
with Mannion (2019) suggesting that these earlier reports of 
putative African “turiasaurian” teeth should be regarded as 
Sauropoda indet. (see Poropat et al. 2022 for a review of the 
taxonomic interpretations of this tooth).

Sereno et al. (1999) noted that the teeth of Jobaria 
tiguidensis are spatulate and variably denticulated along 
their mesial and distal margins (Sereno et al. 1994: fig. 4); 
and while the cross-sectional morphology of the crown was 
not figured nor discussed, the labial/lingual morphology 
is strongly reminiscent of Losillasaurus, Turiasaurus, and 
other turiasaurs (Fig. 2). However, while the teeth of Jobaria 
appear to be similar to those of turiasaurs, and the prefrontal 
and quadratojugal of Jobaria has been noted to be similar 
to Turiasaurus (Royo-Torres and Upchurch 2012), no phylo-
genetic analyses have recovered Jobaria within Turiasauria 
(Upchurch et al. 2004; Remes et al. 2009; Chure et al. 2010). 
Likewise, teeth bearing turiasaur-like morphologies are as-
sociated with new specimens of Haplocanthosaurus sp., 
which could potentially challenge the traditional phyloge-
netic position of this taxon (DCW and John Foster, personal 
observation 2024). However, as with Jobaria, no phyloge-
netic analyses have recovered Haplocanthosaurus within 

Turiasauria. Potentially, convergence could explain the den-
tal similarities in these taxa, and examinations using dental 
indices (e.g., Frauenfelder et al. 2024) might help to eluci-
date their taxonomic position in the future.

By contrast, the Boulahfa Plain teeth show clear evi-
dence of turiasaurian affinities and thus represent the old-
est record of the clade from mainland Africa, as well as 
the first definitive record of the clade from North Africa. 
They are close in age to Narindasaurus from the Isalo III 
Formation of Madagascar (Middle Jurassic, Royo-Torres 
et al. 2021) and pre-date the Late Jurassic (Tithonian) re-
cord of Tendaguria from Tanzania (Mannion et al. 2019). 
The Boulahfa Plain teeth expand the geographic range of 
the clade during the Middle Jurassic, and together with the 
material from Madagascar and the possible record from the 
Pliensbachian of Denmark (Milàn and Mateus 2024) they 
imply that the initial spread of the clade occurred at some 
point in the late Early Jurassic.

Conclusions
The three Boulahfa Plain sauropod teeth represent the first 
definitive turiasaurian remains from Morocco, as well as 
earliest record of Turiasauria from mainland Africa. As 
previously demonstrated by the co-occurring ankylosaur 
Spicomellus afer and the stegosaurs Adratiklit boulahfa and 
Thyreosaurus atlasicus the Middle Jurassic El Mers III For-
mation of Morocco is vitally important for documenting the 
early radiation and biogeographic history of many dinosau-
rian clades.

Although palaeontological exploration in the El Mers III 
Formation is in its early stages, so far, its dinosaur fauna 
consists of two stegosaurs, an ankylosaur, an early-diverging 
cerapodan, and a turiasaur. A similar faunal composition is 
observed in various Late Jurassic faunas globally, for exam-
ple: from the Tendaguru Formation of southeastern Tanzania, 
from the Lourinhã Formation of western Portugal, possibly 
even from the Morrison Formation of the western United 
States, and from the Villar del Arzobispo Formation in east-
ern Spain (Campos-Soto et al. 2019). Middle Jurassic terres-
trial faunas are globally poorly represented (Maidment et al. 
2020), making the fauna of the El Mers III Formation critical 
to our understanding of the establishment of these famous 
Late Jurassic faunas.
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